Observation of Mechanical Triplet Vibrations in RHIC

C. Montag, BNL Nanobeam 2002

Overview of RHIC:

Superconducting two-ring heavy ion collider, 3.8 km circumference, $\gamma_{Au} \approx 100$.

Spectra of horizontal BPM signals in both rings:

Total amplitude corresponds to $\approx 5 \dots 10\%$ of the rms beam size.

Similar spectra \rightarrow common source.

Schematic overview of a RHIC interaction region:

Triplet quadrupoles share a common cold mass for both beams.

Spectra of horizontal beam and triplet motion (IP 4 triplet):

Dominant frequency lines in the horizontal BPM spectrum, and corresponding triplet locations:

Frequency	Triplet	
7.75	12	
8.825	8	
10.14	4,11,12	
10.625	9	
10.825	2	
11.00	11	
11.325	6	
12.700	(10)	
13.000	1	
13.275	unknown	
13.55	9,(2)	
14.325	2	
15.950	2	
16.133	4	
16.500	8	

Mechanical resonance frequencies of the cold masses in the cryostat.

Mechanical model:

Quadrupole	$f_d/{ m Hz}$	$f_q/{ m Hz}$
Q1	21.2	15.8
Q2	14.0	14.3
Q3	15.0	14.1

- Resonance frequencies of this simple model are very close to observed ones.
- Vibrations disappeared when machine was warmed up.

RMS closed orbit distortion:

$$\sigma_{\rm co}(s) = \frac{\sqrt{\beta(s)}\sqrt{\langle\beta\rangle}}{2\sin\pi\nu} \frac{\sigma_{\rm q}}{|f|} \sqrt{N}$$

Observed rms beam jitter corresponds to rms quadrupole jitter amplitudes of $\sigma_{\rm q} \approx 0.5 \,\mu{\rm m}$. For the triplets as a whole, $\sigma_{\rm triplet} \approx 10 \,\mu{\rm m}$.

Measured rms amplitudes on triplet cryostats are 200 nm at most.

 \rightarrow Beam jitter is caused by vibration of the cold masses within the cryostat, rather than by motion of the entire triplet.

Anti-symmetric IR optics results in relative beam offset at IPs:

Modulated beam-beam interaction may be the source of emittance growth at the begin of each luminosity run:

Simulation studies are in progress to investigate this effect.

Conclusion

- IR triplet vibrations have been identified as source of horizontal beam jitter around 10 Hz.
- Driving force seems to be related to cryo system.
- Measurements inside one triplet beam pipe in progress.
- Plan to permanently attach accelerometers to cold masses in one triplet.
- Modulated beam-beam offset probably causes emittance dilution at the beginning of each luminosity run (needs to be investigated).