

NLC Vibration Program & LINX

Tom Markiewicz/SLAC Session #9, Nanobeams 2002, Lausanne, CH 5 September 2002

Beam Delivery R&D Plan

In Progress:

- SLAC based work on inertial systems
 - Simple block & sensor (J. Frisch)
 - Long steel beam
- UBC work on Optical Anchor (T. Mattison)
- Fast Feedback demonstration in NLCTA (FONT) (G. White, S. Smith)

Think about:

- Measuring relative motion of two simple blocks

Planned:

- Realistic design of IP Girder prototype as a proof-of-principle in the stated time frame and start to lead to down-selection of options
- Discuss alternative solutions that might require longer R&D time
 - SC quad (B. Parker)
- Dovetail into LINX-like beam tests if warranted

NLC

NLC Baseline: Permanent Magnet Quad

Compact, Stiff, Connection Free
Control B by controlling magnet position in Closed-Loop FB

Magnet	Aperture	Gradient	Rmax	Z_ip	Length
QD0	1.0 cm	144 T/m	5.6cm	3.81 m	2.0m
QF1	1.0 cm	36.4 T/m	2.2cm	7.76 m	4.0 m

Knut Skarpaas

Tom Markiewicz

NLC

NLC Future? SC Final Doublet based on

HERA & BEPC technology

Cold Bore NLC SC Quadrupole w/ Integrated Sextupole Windings

How does SC Quad Fit into R&D Plan?

- SC Quad the most likely candidate for the FD because operational flexibility
- But vibration R&D in SC Quads is still in conceptual stage. Plans/Ideas:
 - Short Prototype of cold mass w/w.o. cryostat (BNL Funds approved)
 - Magnetic field measurements on new prototypes or existing SC quads
 - SQUIDs?
 - Mechanical stiffness of cryostat w/ multiple wound coils, supports, etc.
 - Modelling?
 - Full scale warm mechanical prototypes? (HERA Magnets?)
 - Effect of helium and power supply connections on vibration

SLAC vibration suppression team will

- Use baseline permanent magnet model for the IP Girder Prototype
 - a demonstration in important in the ~2004 time scale
 - making ANY viable technology work will teach us valuable lessons
- Work with BNL & others to develop a SC magnet vibration program
 - design a SC magnet whose field can be assumed to be as stable as its cryostat
 - adapt the vibration suppression technology to it when it is ready

Inertial Vibration Damper Block Test

Joe Frisch, Tom Himel Eric Doyle, Leif Eriksson, Linda Hendrikson

Status: Developing non-magnetic inertial sensor with adequate sensitivity, noise, and low frequency response

Goal: Stabilize Single Bock in all 6 axes

System Performance

Sensor Development

Long Magnet Stabilization Test Fixture

Study internal modes and stiffness in a more realistic system

Elevation View w/springs, Electrostatic Pushers, & Sensors

Direct Δy Measurement of Two Simple Masses

Suggested by Frisch ~4/1999, Is it needed?

-"Witness" laser interferometer measures exact quantity of interest

-2nd laser interferometer sampled at 120Hz simulates "slow" feedback

-Currently done off-line in software

NLC

Tom Markiewicz

UBC R&D on Interferometers

UBC Setup

Sub-nm resolution measuring fringes with photodiodes ⇒ drive piezos in closed loop

Platform Displacement & Sensor Value

Very Fast Intra-train IP Feedback at

NLC limits jitter-induced ΔL

IP Girder Prototype

- Must look like the final girder and include any mechanical feature that may be a "got-cha"
 - Successfully test relative/absolute nm-y stability when realistically mounted in a realistic experimental environment without a lot of hand waving to explain away deficiencies of the prototype, site or frequency range of interest.
- · Explore conceptual solutions under consideration
 - Inertial vs. Optical sensors
 - "Soft" vs. Hard mounts
 - Incorporate slow feedback directly or measure environment adequately to simulate performance in a lattice

Should we make this a centerpiece program? Is this a Project Worthy of Intl. Effort?

LCD-L2 (3T) with 3.8m L* Optics Cantilevered Support Tube Support Model

Current Final Doublet with New Masks Support Masks From Detector

IP Girder Test Concept

The QDO Magnet Epoxy Wedges & Disks in Stiffening Structure

Stiffened as per 1998 K. Skarpaas design

 Epoxied carbon fiber assembly of 1-2cm thick steel disks tuned to have weight/stiffness of SmCo
 Q1 with stiffener & movers

Q1 End View

Large Detector in Pit cess to detector determines length of cantilever

Support Tube Details Design Support Tube for Test as for Final System

•Stiffness and mass of 50cm diameter tube: material, wall, ...

Carbon Fiber, Stainless, Aluminum,....

-For inertial, depends on performance of sensor under design

Magnetic Coupling of QDO to Detector Solenoid Fringe Field Include? Divided Opinion!

~1000 lb. non-linear off-axis load on PM

 Consensus is that this cannot be ignored, but it complicates test considerably

· "Discovery" of Fermilab 5 Tesla solenoid will be folded

into planning

More Engineering Issues How Real do we have to be?

Vacuum

- Implement mechanical design consistent with vacuum requirement (1 nTorr?) and 1cm radius beam pipe
- May mean that 3m magnet is broken into pieces
- Decide whether beam pipe hangs free of magnet or not
- Nature of contact between QDO magnet and the support tube
 - Static FFTB cams as opposed to a fully functional FFTB mover

Assembly

- Joints and flanges which allow assembly and servicing must be designed and included
- Do we need to support IP end of cantilever with a vibrating detector endcap door?

•

LINX Engineering Test Facility

Address x104 Luminosity Issue!!

e+e- collisions at SLC with ~50nm beams

Beam Energy: 30 GeV DR emittances: FF emittances:

IP Betas:

Bunch length:

IP spot sizes:

Beam currents:

 $\gamma \epsilon_{x,y}$ =1100/50E-8 m-rad $\gamma \epsilon_{x.y}$ =1600/160E-8 m-rad β_x =8mm β_y =0.1 mm

> σ_{7} =0.1 - 1.0 mm $\sigma_{x,y} = 1500/55 \text{ nm}$

N= 6E9

NLC 250 GeV 300 / 2 360 / 3.5 same 0.11 mm 245/2.7nm 7.5E9

- Test stabilization techniques proposed for future linear colliders and demonstrate nanometer stability of colliding beams
- Investigate new optical techniques for control of beam backgrounds
- 3. Provide a facility where ultra-small and ultra-short beams can be used for a variety of other experiments

Nanometer Stability of Colliding Beams

Beam-Beam Deflection gives **1nm stability resolution** for beam spots from 1-400nm

NLC

Colliding beams provide a Direct Model-Independent Test of any engineering solution to the final doublet stability problem

Not possible in FFTB

LINX Secondary Goal

Verify that Local Chromaticity Correction Plus Octupoles can Fold Beam Tails, Decrease Sensitivity to Backgrounds, and Ease Constraints on the Collimation System

Backgrounds at SLC Limited Luminosity

Confidence that comes from an Actual Demonstration may permit a great savings in collimator design, and pps and muon shielding Markiewicz

Ultra-short & -low emittance beams

Producing NLC-like beams cannot help but increase confidence in the program

Various tests relevant to NLC or exploiting the short bunches may be performed:

- •Plasma wakefield acceleration studies
- •Traveling focus study
- •Low latency Feed-forward orbit correction
- •Collimator tests
- •Instrumentation test-bed

Technical Feasibility for LINX

```
Parasitic to PEP-II Operation: 30 HZ, 30 GeV
Damping Rings:
    Typical SLC running: \gamma \epsilon_{x,y}=2900/150E-8m-rad
   Typical FFTB \gamma \epsilon_{v} = 1/90E-8m-rad > need x2-3 improvement
                     \gamma \varepsilon_{v} = /70E-8m-rad
    "Best" SLC
    LINX: Reduced rep rate allows "long store" AND simple
      rewiring allows shift of magnetic center of QFs in ring to act
      as combined function magnets and to decrease \epsilon_{xy} by x3
Linac: No different than 1994-1997 FFTB runs and recent
   (E150,E157) FFTB plasma experiments
Arcs: 30 GeV running reduces SR emittance growth to ~0
Final Focus: Optics are "EASY"; need only:
    New doublet w/ sextupoles
    New octupole pair to investigate tail control
```


LINX IR and OPTICS

LINX Stages

- Step 1: Successfully transport e+ and e- beams to the north and south beam dumps respectively.
- Step 2: Demonstrate that the SLC beamlines can still deliver high quality colliding beams.

DECISION POINT TO PROCEED & CONSTRUCT DOUBLET

- Step 3: Produce ultra-short beams.
- Step 4: Evaluate the effectiveness of background suppression with the new Final Focus optics.
 - Step 5: Produce ultra-low emittance beams.
- Step 6: Develop fast intra-pulse feedback hardware INSTALL NEW DOUBLET
- Step 7: Produce < 100 nm vertical beam size at the IP.
- Step 8: Demonstrate nanometer stabilization at the IP.

LINX Status

Letter of Intent for the LINX Test Facility at SLAC

Bureaucratic:

- A DRAFT Letter of Intent distributed
- Expressions of Interest
 - DESY offers to build Octupoles

 - Substantive effort financial support from LLNL & Northwestern for development of LINX and its eventual use in the prototyping of a $\gamma\gamma$ collider
- An independent "Preliminary Cost Estimate for the LINX Test Facility at SLAC" MADE
- SLAC VETOES spending \$ more until LC funding appears

Hardware: ~\$100K spent by SLAC shops

- Both N & S Arc/FF Leak checked & problem areas identified
- SARC & SFF vacuum re-established & left filled with N₂
- All work on ARC/FF stopped as of 4/12/02

NLC Collaboration

Stanford Linear Accelerator Center Lawrence Livermore National Laboratory Lawrence Berkeley National Laboratory Fermi National Laboratory