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I. A bit of gravitational wave physics
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Gravitational waves
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• Small coupling factor
⇒ GW generation on earth not possible

⇒ astrophysical sources
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Gravitational waves exist

• PSR 1913+16 (Taylor et Hulse 1974)

binary system formed by two neutron stars (one pulsar)
period ~ 8 hours

• Energy loss due to gravitational wave emission (excellent agreement with GR theory)

(Taylor et al. 1992)

005.00023.1 ±=
theorie

obs

P

P
�

�

• stars will coalesce in 108 years
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Coalescing binaries

• Binaries formed by compact stars (NS/NS, NS/BH, BH/BH)

• Inspiral signal accurately predictable
(more energy at low frequency)

• Event rate:
- statistical analysis    ~ 1/105 yr in the Milky Way

~ 3 / yr inside a radius of 200 Mpc (Narayan et al. 1991, Phinney 1991)

- evolutionary model  ~ 3 / yr inside a radius of 40 Mpc (Lipunov et al. 1994)

chirp
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Coalescing binaries as physics lab

• Standard candles:
distance of the source can be found out of the waveform of a NS/NS 
[Schutz, Nature, 1986]

• Test for GR:
accurate measurements of inspiral waveform can test gravity in the strong field 
regime [Damour, Esposito-Farese, gr-qc/9803031]

• Nuclear physics: 
before coalescence waveform sensitive to the equation of state 
[Cutler et al., PRL, 70, 1993]
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Other sources in the sky

• Supernovae
- star core collapse (non-spherical collapse)
- impulsive event
- waveform and amplitude difficult to predict
- rates: tens/year in the VIRGO cluster

• Rotating neutron stars
- GW emitted if non perfectly spherical star
- periodical signals, amplitudes unknown, upper limits from pulsars slow down
- ~ 800 pulsars known today, ~109 neutron stars in the galaxy

• Relic stochastic background
- imprinting of the early expansion of the universe
- stochastic signals (two correlated detectors needed)
- signal too weak if standard inflation, signals larger from some string models

• ???
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The goals of VIRGO

• First direct detection of gravitational waves

• Study of gravitational force 
- weak force not well known
- small amount of data available in strong field conditions and on non-linear effects

• New window on the universe
- signals emitted by coherent motion of large quantity of matter
- very small absorption through matter
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II. Gravitational wave detection
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GW detection using interferometers

• Gravitational wave effect (spin 2 wave)

• Michelson interferometer

• All mirrors suspended through pendulums

= ‘free falling masses’

• h = 10-21 , L = 3 km ⇒ ∆L ≈ 10-18 m

• GW detection = measure tiny displacements
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Photons shot noise

• GW   ⇒ phase shift

• Minimum measurable phase shift

• with L = 100 km and P = 1 kW

h ~ 3·10-23
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Photons shot noise

• Effective length increased
with Fabry-Perot

(F = finesse FP)

L’ = 100 km with L = 3 km 

• Amount of photons increased
using recycling mirror

(R = recycling factor)

P’ = 1 kW avec P = 20W
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Seismic noise

• Seismic noise spectrum

for frequencies f ≥ few Hz (a ≈ 10 -6 - 10 -7 )

larger at low frequency

• Main limitation at low frequencies

• Very large attenuation required

• Noise level sensitive to human activity

(agricultural activity in Cascina)

• Security distances

– road > 500 m

– agricultural activity > 100 m
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Spectrum measured at Cascina
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Other noise sources

L

Laser power and
frequency noise

Thermal
noise

Photons
shot noise Detection 

noise

Air index of refraction 
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Seismic
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III. The VIRGO design
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The VIRGO project

• French-Italian collaboration

• 11 laboratories:

• About 150 persons involved (physicist + engineers + technicians)

• Funded by INFN in Italy and CNRS in France

• Set up a 3 km arm long interferometer near Pisa (Italy)

• Construction started in 1996

LAPP Annecy,  INFN Firenze,  INFN Frascati,  IPN Lyon, 
INFN Napoli,  Observatoire de Nice,  LAL Orsay,  ESPCI Paris, 

INFN Perugia,  INFN Pisa,  INFN Roma
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The VIRGO interferometer
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The mirrors

• Dimensions: ∅ 35 cm, 10 cm thick

• Mass: 20 kg

• Suspended by 4 steel wires (∅ 200µm)

• Made of fused silica

• Coating made in VIRGO

• Metrology made in VIRGO

• Absorption and diffusion < few ppm

• Wave-front < λ/100
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Seismic isolation

• Seismic isolator:
- cantilever springs for vertical isolation
- pendulums for horizontal isolation
- an inverted pendulum as pre-isolator

• Six stages in cascade

• Total attenuation ~ 1010 @ 10 Hz

Cantilever springs Mirror

Inverted
pendulum

Seismic
filter

Electro-magnetic
actuators
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Vacuum system

‘Tower ’Tube (∅ 1.2 m)

3 km

• Pressure ~ 10-9 mBar
• Very low hydro-carbon contamination
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Interferometer control
• Large seismic attenuation in the detection band (above few Hz)
• No attenuation or amplification (due to suspension internal resonance’s) below few Hz
• Large mirrors motion/drifts at low frequency ~ 10-4-10-3 m

• Active controls needed
1) to keep the interferometer aligned
2) to maintain the interferometer in
required interference conditions 
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Inertial damping

• Use accelerometers to sense top stage motion respect 
to an inertial frame (above 30 mHz)
• Use LVDT’s to sense top stage motion respect to ground
• Feedback to top stage using electro-magnetic actuators

• Reduce mirror motion to 1 µm above 30 mHz
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Interferometer alignment
• Coarse alignment: CCD camera looking at marks on mirror (10 µrad)
• Finer alignment: CCD camera and optical lever (1 µrad)
• Final alignment using interference signal (1 nrad)
• Actuation through coils acting on ‘marionetta’
• Digital control

‘marionetta’

mirror

‘marionetta’

mirror

coil

magnet coil
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Interferometer length control
• Interferometer operation needs to control 
cavities length accurately ~ 10-12 m

• Residual motion  above 30 mHz
reduced to 1 µm using inertial damping 

• Further reduction using 
interferometer signal

• Split signal in bands and use 
suspension actuators hierarchically

• Larger drift correction using 
inverted pendulum

• Fine corrections applied directly to mirror
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Laser frequency stabilization

• Free running laser: frequency stability ~ 1 kHz

• Pre-stabilization using input mode-cleaner as reference cavity (~10-2 Hz/√Hz)

• Final stabilization using interferometer as reference cavity (~10-6 Hz/√Hz)
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VIRGO planned sensitivity
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IV. Status of VIRGO
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Civil engineering
• 3 km arms and all buildings completed last winter
• Central area available since 1998
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The central interferometer (CITF)

L=6m L=6.4m

L=5.6mL=144m

L=0.04m
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Vacuum chambers installation
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Suspensions installation



Lausanne, September 2, 
2002

32

Optics installation

Detection bench

Injection bench
Mirrors
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CITF commissioning

• Main purposes
- verify technical choices made for Virgo
- gain experience
- train people

• Achievements
- interferometer controlled
- performances and reliability understood
- 5 engineering runs performed (E0-E4)

• End of commissioning last July:
- few changes planned for Virgo 

Frequency (Hz)

Displacement sensitivity (m/√Hz)

E0 (September 2001)

E1

E2

E3
E4 (July 2002)

Virgo
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Tube installation

• 2 × 3 km → 400 modules (15 m)
• all modules installed 
• few links to be installed
• vacuum achieved ~ 3 à 5 10-10 mbar

• Installation will be complete next October
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Conclusion: next steps

• 2002 Upgrade CITF to Virgo
- Suspensions and mirrors installation in the end buildings
- Installation of final mirrors in the central area

• 2003 Virgo commissioning
- Set-up control systems
- First engineering runs

• 2004 First science run 
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VIRGO planned sensitivity

SEISMIC

THERMAL SHOT


