Nanobeam 2002

Lausanne, Switzerland

2-6 September 2002

www.esrf.fr

E-beam stabilization experiences at the ESRF

L Zhang, L Farvacque

European Synchrotron Radiation Facility

Outline

Introduction

- **Ground vibration**
- Vibration sources identification
- Mechanical design optimization
- **Damping device for machine girders**
- e-beam feedback

Introduction – *e-beam stability*

e-beam size at source points

- $RMS_{vertical} = 8 \ \mu m$
- $RMS_{horizontal} = 59 \ \mu m$ for low- β section, 402 μm for high- β section

e-beam stability requirement

- 20% emittance growth $\Delta \epsilon/\epsilon$, ~ 10% e-beam size & 10% divergence
- $\Delta RMS_{vertical} < 0.8 \ \mu m, \ \Delta RMS_{horizontal} < 6 \ \mu m \ (low-\beta), \ 40 \ \mu m \ (high-\beta)$

Quadrupole stability requirements

- e-beam vibration amplification by optics ~ 20 (V), 30 (H)
- \rightarrow quadurpole vibration RMS_{Q-vertical} < 0.04 µm, Δ RMS_{Q-horizontal} < 0.2 µm (low- β)

Ground stability requirements

- quadrupoles vibration amplification : 2 (compared to ground)
- \rightarrow ground vibration RMS_{G-vertical} < 0.02 µm, Δ RMS_{G-horizontal} < 0.1 µm (low- β)

Introduction – *X*-*ray beam stability*

ESRF : synchrotron light source

E-beam stability : quadrupoles, girders, ground

X-ray beam stability

- Sample holder
- X-ray optics (mirror, monochromator)
- e-beam source
- Ground

X-ray beam stability requirement

- X-ray beam size : 0.1 μ m ~ a few cm, 10% of size \rightarrow 0.01 μ m
- Angular stability : better than 0.1 µrad

Introduction

Transfer function

(ground vibration $d(f) \rightarrow$ e-beam emittance growth $\Delta \varepsilon / \varepsilon$)

Ground vibration – versus time

Typical values (µ**m**)

	day	night
P2P	0.80	0.36
RMS	0.12	0.05
RMS _{4-100Hz}	0.04	0.018

 $\begin{array}{l} Requirements: \\ \Delta RMS_{G\text{-vertical}} &< 0.02 \ \mu m \\ \Delta RMS_{G\text{-horizontal}} < \ 0.1 \ \mu m \end{array}$

Vibration source identification

Internal sources

- Water flow : rubber connection, flexible versus rigid pipes, ...
- Power supply : vibration isolation
- Ventilations : in SR tunnel, experiment hall, optic table,...

External sources

- Earthquake
- Speed bump at the exit of the motorway
- Road surface near the site (sewer covers, irregularities,...)
- Speed bump in the site
- Big machines near the site : compressor, electric-heat cogenerator,water pumps,...
- Traffic : trains, trolley-bus, trucks, buses,...
- Bridges near the site
- Grenoble site (3 Hz)

Vibration source identification - earthquakes

Mechanical design optimization

Design guide line :

- Natural frequencies : as high as possible
- \rightarrow low mass, high stiffness
- Avoid non necessary adjustments : jacks, translation, rotation stages,...
- Individual versus grouped supports or tables
- fixations
- Finite element simulation

machine girder – *modes identification*

natural frequencies comparison

		before tuning		after t	uning
No	f _{test}	$f_{\it FEM}$	Δ	$f_{\it FEM}$	Δ
1	8.68	8.89	2.4%	8.64	-0.5%
2	11.74	11.64	-0.8%	11.75	0.1%
3	13.63	12.86	-5.6%	13.70	0.5%
4	22.33	22.47	0.6%	22.47	0.6%
5	26.29	26.45	0.6%	26.35	0.2%
6	27.82	27.17	-2.3%	27.14	-2.5%
7	32.18	31.58	-1.9%	31.48	-2.2%
8	32.30	33.12	2.5%	33.13	2.6%
9	34.85	36.39	4.4%	36.38	4.4%
10	39.49	38.29	-3.0%	38.28	-3.1%

machine girder – modes identification

from modal testing

from FEA

Damping device – *damping plates*

Q-value reduction by a factor of 10

Stiffness reduction : position drift

Damping device – *damping link*

- Q-value reduction by a factor of 6
- Stiffness increase : 1st natural frequency shifted to higher frequency

Damping link for machine girder – *performance*

	PSD _{pk}		rms _{4-12Hz}	
	$\mu m^2/Hz$	ratio	μm	ratio
noDL	158		11.7	
DL	3.2	49	3.1	3.8

e-beam motion

RMS amplitude (μm) of the horizontal motion in the frequency range of 4-12 Hz 14 12 10 ſ Jan01 Oct01 Jul00 Oct00 Apr01 Jul01

The RMS amplitude was reduced from

- 🏷 10 μm to 2.7 μm (4-12 Hz)
- **5** 12 μm to 4 μm (4-200 Hz)

e-beam motion

e-beam feedback

Global feedback

- Vertical : 16 BPMs and 16 correctors
- Horizontal : 32 BPMs and 24 correctors (to be implemented)
- **Local feedback** (for Horizontal direction)
 - installed on 4 straight sections
 - 4 steerers + 2 BPMs / bump
 - correction rate : 4.4 KHz
 - Bandwidth : 0.01 to 100 Hz

e-beam motion - summary

at the middle of a high- β straight section ($\beta_x = 35.4$ m)

RMS horizontal	=	402	μm
----------------	---	-----	----

$\Delta RMS_{horizontal} (\mu m)$	4-12 Hz	4-200 Hz
no damping links (µm)	10	12
with damping links (µm)	2.7	4
damping links + feedback (µm)	0.28	1

6 μm (low-β) 40 μm (high-β)

at the middle of a high- β straight section ($\beta_z = 2,5$ m)

 $RMS_{vertical} = 8 \ \mu m$

$\Delta RMS_{vertical} (\mu m)$	4-12 Hz	4-200 Hz
with damping links (µm) (µm)	0.5	1
damping links+feedback (µm)	0.17	0.6

0.8 µm

End

Thank you For your attention