Beam Delivery Systems (BDS) for Pedestrians

A brief overview to set the scene

Nick Walker DESY

BDS Functionality

- Focus and collide *nanobeams* at the interaction point (IP)
- Remove (collimate) the beam halo to reduce detector background
- Provide beam diagnostics for the upstream machine (linac)

Focusing and Colliding Nanobeams

- Final Focus Systems (FFS) need to provide very strong defocusing of the beams
- Correction of chromatic and geometric aberrations becomes principle design challenge
- A consequence: systems have extremely tight alignment (*vibration*) tolerances
 stabilisation techniques a must!

FFS solutions: two approaches Primary aberration is strong chromaticity of final lens ($f = \sim$ meters)

Non-local correction using dedicated *chromatic correction sections* (CCS) upstream of final telescope
 Local correction at final doublet

Used at SLC and FFTB (*tested*)

Currently proposed for next gen. LC (*not tested*)

The conceptual difference

Local correction with *D*' at IP [*Raimondi*, 2000]

Non-local correction (CCS) [*Brown*, 1985]

2nd September 2002

Nanobeams 2002 Lausanne

Nick Walker - DESY

Pros and Cons

FFTB-type

- Advantages
 - high symmetry (orthogonal tuning)
 - conceptually simple, ease of design
 - experimentally tested (SLC/FFTB)
- Disadvantages
 - non-local correction results in high-order aberrations (bandwidth limit)
 - shorter L*
 - system is long (~kilometers)
 - bad scaling to higher E

Raimondi-type

- Advantages
 - high-bandwidth system
 - very short (~500m)
 - longer L* possible
- Disadvantages
 - balance of geometric and δ^2 terms difficult
 - conceptually difficult to design! (*there is only one*...)
 - no test

2nd September 2002

Nanobeams 2002 Lausanne

Stability Issues

- Stability tolerances driven by nm beam sizes at the IP
 No (or little) difference between two FFS systems
 <u>need to worry about</u>
 - ~100 nm vibration amplitudes for most magnets
 - ~10 nm for a few sensitive magnets
 - ~nm for final lens (final doublet)
- Must have:
 - mechanical stabilisation
 - beam-based feedback

large part of nanobeams dedicated to this subject!

Collimation Issues

- Must efficiently remove 'halo' by physically scraping it away
- IR layout and choice of FFS optics defines collimation requirements (synch. radiation etc.)
- Mechanical collimator jaws with typical gaps of tens of beam σ (few hundred µm to ~1 mm)
- Constraints:
 - must not degrade luminosity (optical aberrations, collimator wakefields)
 - mechanical protection issues (typical average beam power densities are several GW.mm⁻²)

Collimation solutions

- Optically blow up beam sizes so collimators have big gaps and can survive a hit by the beam:
 - systems became long (kilometers), with very large β functions and tight optical tolerances
 - Non-linear problems
- Keep β-functions relatively small
 - shorter, manageable systems
 - better optical and wakefield performance
 - looser tolerances
 - beam will destroy collimator (NLC approach: use 'consumable collimators')

Can we do better?

- Two systems to date are there more solutions?
- What are the fundamental limits:
 - synchrotron radiation effects (e.g. Oide limit)
 see talk by F. Zimmermann
 - magnet (focusing technology); other novel (radical?) approaches have been proposed:
 - plasma lens
 - two-beam (so-called dynamic) focusing
 - stabilisation technology where are the limits?
- Let's see what comes out of this workshop ③