Introduction

The combined effect of wakefields and dispersion in the main linac and beam-beam interaction at the IP has been shown to be able to result in a severe luminosity loss in spite of a very small emittance growth

R. Brinkmann, O. Napoly, D. Schulte: PAC 2001

e.g. 1% emittance growth can result in 20% luminosity loss

Content

Introduction

Static Banana Effects

Dynamic Effects

Conclusion

Beam-Beam Interaction

Bunches at the IP produce a very strong electromagnetic field because of the high particle density

therefore beam-beam forces are huge

they are focusing

convenient is the disruption parameter $D_{x,y}$

$$D_{x,y} = \frac{2Nr_e\sigma_z}{\gamma\sigma_{x,y}(\sigma_x + \sigma_y)} = \frac{\sigma_z}{f_{x,y}}$$

normally

 $D_x \ll 1$: bunch acts as a thin lens

 $D_y \gg 1$: particles from other bunch start to oscillate

beneficial: $\mathcal{L} = H_D \mathcal{L}_{geom}$

but two stream instability

Luminosity and Disruption

$$\mathcal{L} \propto \frac{n_b f_{rep} N^2}{\sigma_x \sigma_y} \propto P_{beam} \frac{N}{\sigma_x \sigma_y}$$
$$D_y \propto \frac{N \sigma_z}{\sigma_x \sigma_y}$$
$$\mathcal{L} \propto P_{beam} D_y \frac{1}{\sigma_z}$$
$$\mathcal{L} \approx H_D \times 1.74 \times 10^{34} \,\mathrm{cm}^{-2} \mathrm{s}^{-1} \frac{P_{beam}}{\mathrm{MW}} D_y \frac{\mu \mathrm{m}}{\sigma_z}$$

- \Rightarrow if one has a long bunch and high luminosity one needs to have a large disruption parameter
 - here, D_y is nominal disruption parameter,

effective one is usually larger

Project Parameters

name		TESLA	NLC	CLIC
$\epsilon_{y,DR}$	[nm]	20	20	5
$\epsilon_{y,BDS}$	[nm]	30	30	10
N	$[10^9]$	20	7.5	4
σ_x^*	[nm]	553	243	202
$\sigma_{y,DR}^*$	[nm]	4.2	2.3	(1.1)
$\sigma^*_{y,IP}$	[nm]	5	3	(1.5)
$\sigma^{a}st_{z}$	$[\mu m]$	300	110	35
$D_{y,DR}$		28.9	16.5	7

emittance grows along the machines due to

- wakefield effects
- dispersion

shape change may have

- \bullet no correlation in \boldsymbol{z}
- \bullet correlation in \boldsymbol{z}

disruption calculated with $\epsilon_{y,DR}$

disruption is highest in TESLA

 \Rightarrow concentrate on this case

Simulation Procedure

Main linac and BDS are simulated with PLACET including

initial misalignments

beam-based alignment

dynamic errors

beam-beam interaction is simulated with GUINEA-PIG

a problem arises from the instable collision

computational parameters (e.g. number of macro particles and slices) affect results

Static Emittance Growth

Static alignment procedure for TESLA is changing

a simplified model is used to produce the budgeted emittance growth

```
single error (BPM position, cavity offset or cav-
ity angle)
```

error mixture

single error tests whether different errors give similar results

mixture should be a better representation of alignment result

single errors are $(35\mu m, 1150\mu m, 750\mu rad)$

```
mixture is (25\mu m, 600\mu m, 300\mu rad)
```

Static Collision Optimisation

Dynamic effects are completely ignored

first offset is scanned to maximise luminosity

then crossing angle is introduced

significant increase of luminosity in both steps

	BPM pos.	cav. pos	cav angle	mixture	
optimisation	$\mathcal{L} [10^{34} \text{cm}^{-2} \text{s}^{-1}]$				
none	2.4	2.1	2.1	2.2	
offset	2.7	2.8	2.7	2.5	
angle	3.3	3.4	3.2	3.3	

better than expected (with no waist shift 3.0)

Lower Disruption Machines

Improvement much smaller (CLIC shown in plot) main contribution from offset optimisation

	NLC	CLIC	
optimisation	${\cal L}$	${\cal L}$	
	$[10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}]$	$[10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}]$	
none	1.8	2.2	
offset	2.1	2.5	
angle	2.2	2.6	

Waist Optimisation

In TESLA, waist optimisation obtained $\approx 15\%$ luminosity for straight beams

first both waist are moved symmetrically than antisymmetrically

usually not very efficient with bananas

- \Rightarrow small average gain
- \Rightarrow but almost 10% in one case

Dependence on Computational Parameter

The same 25 machines where used, misalignments are scaled

case A has

- 72000 macro particles
- 72 slices

case B has

- 24000 macro particles
- 24 slices

results differ significantly

largest difference at full optimisation

Sensitivity to Offsets

Small number of particles (case B)

case 1: 100% of misalignment applied

- a: offset and angle optimised
- b: only offset optimised
- case 2: 50% of misalignment applied
- averaged sensitivity of 25 machines
- \Rightarrow the higher the luminosity the tighter the tolerance

Sensitivity (cont.)

Different misalignments lead to same luminosity

case 2: 50% (case B)

case 3: 85% (case A)

- \Rightarrow sensitivity to offset does not seem to change dramatically
- \Rightarrow using faster simulations may be OK

Error Sources

Position Δy and angle $\Delta y'$ errors at IP exist three main regions of error sources exist everything before the linac couples into Δy , $\Delta y'$, amounts $\Delta y/\sigma_y$ and $\Delta y'/\sigma_{y'}$ may differ the linac equally into Δy , $\Delta y'$ beam delivery system more Δy

Linac Quadrupole Jitter

Six cases considered

- no correction
- correcting offset
- correcting angle and offset
- varying offset to maximise luminosity
- varying offset and angle to maximise luminosity
- also correcting beam angle and offset before BDS
- \Rightarrow sometimes it is not only the banana

Feedback and Ground Motion

Medium severe ground motion used (following A. Seryi)

in CLIC (shown) $\Delta t = 5 \,\mathrm{ms}$ between pulses

slow feedbacks with gain g = 0.04 assumed

in TESLA
$$\Delta t = 200 \,\mathrm{ms}$$

more severe ground motion

 \Rightarrow loss at first pulse after complete optimisation is large (> 50%)

but intra-pulse feedback can easily be used

Intra-Pulse Feedback

Severe ground motion used (following A. Seryi) slow feedbacks included (idealised)

 $\mathcal{L}/\mathcal{L}_0$ [%]:

gain (slow)	0.01	0.02	0.04
no feedback	26.0	29.1	33.0
offset feedb.	63.7	66.2	70.3
+angle feedb.	78.5	81.4	83.4
+lumi opt. w. offset	86.4	89.7	91.8
+lumi opt. w. angle	92.4	95.1	96.0

large gain from minimising offset at IP

Conclusion

The static effect can be (almost) cured optimise beam offsets and angles at IP cure of dynamic effects

- centroid offsets: BPM based feedbacks in TESLA pulse-to-pulse is not sufficient
 ⇒ intra-pulse feedback
- banana effects: luminosity based feedbacks
- \Rightarrow require fast luminosity measurment

intra-pulse feedback is interesting for TESLA

because of banana effect

non-IP feedbacks are also important