Orbit Control at the SLS Storage Ring

26th Advanced ICFA Beam Dynamics Workshop on Nanometre-Size Colliding Beams

(September 2-6, 2002, Lausanne)

T. Schilcher

Outline

- Stability Requirements
- Feedback Implementation
 ⇒ Slow Orbit Feedback
- Results of Slow Orbit Feedback
- Upgrade to Fast Orbit Feedback

SLS Parameters

Energy:	2.4 GeV
RF frequency:	500 MHz
Circumference:	288 m
Emittance (horizontal):	5.0 nm•rad
Vertical Beamsize	
@ ID (short straights):	$\sim 10 \ \mu m$ (1% coupling)
Beta functions @ short straights:	
horizontal:	1.4 m
vertical:	0.9 m

Stability Requirements

Source fluctuations < one order of magnitude below resolution of experimental stations

- angular stability: $\Delta \Theta_{\text{beam}} < 1 \ \mu \text{rad}$
- position stability:

 $\Delta \Theta_{\text{beam}} < 1 \,\mu\text{rad}$ 1/10th of vertical beam size at location of insertion devices $\Rightarrow 1 \,\mu\text{m}$ in vertical plane

• suppress oscillations up to 100 Hz by factor of 10

T. Schilcher

26th Advanced ICFA Beam Dynamics Workshop ,Sep. 2 - 6, 2002

Results of Slow Orbit Feedback

Example: 3 days run, 13 Aug 2002 - 16 Aug 2002

- top-up operation
 - \Rightarrow thermal equilibrium of machine
 - \Rightarrow nearly no drifts
 - ⇒ no beam current dependencies of BPMs
 - \Rightarrow constant heat load on experiments
- correct orbit to "golden orbit"
 - minimum coupling (beam based alignment)
 - requested local bumps at ID

26th Advanced ICFA Beam Dynamics Workshop ,Sep. 2 - 6, 2002

T. Schilcher

26th Advanced ICFA Beam Dynamics Workshop ,Sep. 2 - 6, 2002

T. Schilcher

26th Advanced ICFA Beam Dynamics Workshop ,Sep. 2 - 6, 2002

horizontal angle:

vertical angle:

T. Schilcher

26th Advanced ICFA Beam Dynamics Workshop ,Sep. 2 - 6, 2002

Fast Orbit Feedback

Properties:

- update rate: 4 kHz
- BPM data exchange only between adjacent sectors over point-to-point fibre optic links (40 Mbytes/s)

 $(\Rightarrow$ reflecting the localized structure of the inverted response matrix)

• direct control of magnet power supplies (by-passing control system)

Status:

- global BPM data exchange $< 8 \ \mu s$
- implementing communication between beam dynamics server and individual BPM/feedback stations
- planned start of commissioning: Dec. 2002 (priority to multibunch feedback system)

Important Prerequisite:

reliable BPM data \Rightarrow "intelligent" BPM software which detects faulty data and disables BPM

⇒already implemented for slow orbit feedback

