NanoBeam2002

26th Advanced ICFA Beam Dynamics Workshop on Nanometer Size Colliding Beams

September 2-6, 2002, Lausanne, Switzerland

SIMULATION TOOLS for LUMINOSITY PERFORMANCE

Stefano Redaelli

CERN SL-AP

CH-1211 Geneva 23

Switzerland

Motivations for this work –

PhD student at Université de Lausanne (UNIL) – Institut de Physique des Hautes Énergies (IPHE)

CERN supervisor:Dr. Ralph W. Aßmann (SL-AP)UNIL supervisor:Prof. Tatsuya Nakada (UNIL)

Thesis:

Demonstrate the feasibility of colliding beams with nanometre spot size for linear colliders (CLIC)

Investigate achievable stability of quadrupoles (→ talks tomorrow)
 Predict machine performance with simulation tools

 Goal of this work: Put error bars on results of simulations for luminosity performance

Work done in collaboration with:

- R. Aßmann, H. Burkhardt, D. Schulte, F. Zimmermann CERN, Geneva
- Y. Nosochkov, T.O.Raubenheimer, A. Seryi, P.Tenenbaum SLAC, Stanford
- N. Walker DESY, Hamburg

Additional thanks to:

- H. Grote, G. Guignard, M. Hayes, J. Jowett, G. Rumolo, R. Tomás, I. Wilson – CERN, Geneva
- A. Wolsky LBNL, Berkeley
- M. Woodley SLAC, Stanford
- P. Raimondi LNF, Frascati
- G. A. Blair Royal Holloway, London
- A. Bay, T. Nakada UNIL/IPHE Lausanne

Overview of my talk:

- 1. Introduction
- 2. Code comparison for the **old** CLIC lattice ffcol_v2Fz
- 3. Code comparison for the *new* CLIC lattice fflc02
- 4. Conclusions

1. Introduction

All future Linear Colliders aim at colliding beams with vertical spot sizes in the 1 nm to 5 nm range (energy from 0.25 TeV to 1.5 TeV)

Machine	Energy	Beam Size [nm]	Luminosity [cm ⁻² s ⁻¹]
TESLA	800 GeV	392 x 2.8	5.3 10 ³⁴
NLC	1000 GeV	219 x 2.1	3.0 10 ³⁴
CLIC	1500 GeV	61 x 0.7	8.0 10 ³⁴

No test facility presently available to prove experimentally the **feasibility** of nanometer spot sizes + luminosity

Estimate of machine performance must *fully rely* on simulation codes for tracking + luminosity studies.

Code comparison as tool to assess the confidence in simulation results! \rightarrow Systematic errors of performance predictions <u>Experimentally</u>: input from CLIC Stability Study (\rightarrow see talks tomorrow)

Simulation codes used for comparison

Four codes used for tracking through CLIC *Beam Delivery System*:

- MAD8 : All purpose simulation code, tracking with transport formalism
- DIMAD : tracks particle trajectories according to a second order matrix formalism (\rightarrow MatLIAR)
- Merlin : performs charged particle tracking using first and second-order transport matrices
- ▲ **Placet** : program for LINAC simulations, upgraded to include high order multipoles and Syn. R.

DESY

⊗ Luminosity calculations with GuineaPig – full simulation of two beam interaction (hour-glass, pinch, beamstrahlung, e⁺e⁻production)

GuineaPig interfaced with all the programs!

(For Comparison of LINAC+BDS (no SR) \rightarrow LCC-0091, Tesla-2002-08, CLIC-513)

2. Comparison for the OLD CLIC BDS lattice ffcol-v2FZ (PAC01)

EPAC02, S. Redaelli et al, Comparison of Different Tracking Codes for Beam Delivery Systems of Linear Colliders

Compact design from P. Raimondi and A. Seryi

Beam parameters at BDS entrance								
E	$1500\mathrm{GeV}$		000					0.4
$\Delta E/E$	1%(square dist. FW)		800.	$B_{r}^{1/2}$	$B_{v}^{1/2}$		D_r	- 0.4
eta_x	$65\mathrm{m}$		700.		P ³			- 0.3
eta_y	18 m		600			$\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$		- 0.2
$lpha_x$	0 m		000.				-	0.2
$lpha_y$	0 m	$n^{1/2}$	500.				-	- 0.1
ϵ_x^*	680 nm	$(n)^{2}$	400.		۱ ۱ ۱		······	- 0.0
ϵ_{u}^{*}	$20\mathrm{nm}$	β			Å			
σ_z	$30\mu m$		300.					0.1
Bea	m parameters at IP		200.					0.2
β_x^*	8 mm		100		/ <u>1955</u>	~		03
β_{u}^{*}	$0.15\mathrm{mm}$		100.]; _/`				0.5
σ_x	$43\mathrm{nm}$ theoretical $-\sqrt{c}$	\overline{A}	0.0		2000			0.4
σ_y	$\frac{1\mathrm{nm}}{1\mathrm{nm}}$	$ ho_i$	l	0.0	2000. s (4000. m)	6000.	

Lattice main parameters:

• Length = 6.2 km

- 80 quadrupoles
- 16 sextupoles

Some tracking results...

Transverse profile of the beam at the Interaction Point

Energy spread and Synchrotron Radiation perturb the Gaussian like particle distributions

Bunch with initial energy spread

-100

-200

Stefano Redaelli, Simulation Codes for Luminosity Performance, page 8

Perfect machine (no ΔE , no SR)

100

200

0

x^{*} [nm]

Comparison of the different codes

- Beam sizes calculated as **Standard Deviation** of particle positions
- 5 sets of 20000 particles (same particle distributions)

 \rightarrow Average beam size \rightarrow Error = StdDev / $\sqrt{N_{set}-1}$

	Horizontal beam sizes					
		No ΔE - No SR	$\Delta E/E=1\%$ - No SR	$\Delta \mathrm{E}/\mathrm{E}{=}1\%$ - SR		
	MAD	$42.96\mathrm{nm}{\pm}0.09\mathrm{nm}$	$48.34\mathrm{nm}{\pm}0.07\mathrm{nm}$	$60.24\mathrm{nm}\pm0.27\mathrm{nm}$		
	DIMAD	$42.96\mathrm{nm}{\pm}0.09\mathrm{nm}$	$48.10\mathrm{nm}{\pm}0.05\mathrm{nm}$	$61.23\mathrm{nm}{\pm}1.98\mathrm{nm}$		
	Merlin	$42.93\mathrm{nm}{\pm}0.09\mathrm{nm}$	$47.98\mathrm{nm}{\pm}0.06\mathrm{nm}$	$59.20\mathrm{nm}{\pm}0.25\mathrm{nm}$		
	Placet	$42.93\mathrm{nm}{\pm}0.07\mathrm{nm}$	$47.97\mathrm{nm}{\pm}0.05\mathrm{nm}$	$58.92\mathrm{nm}{\pm}0.15\mathrm{nm}$		
	Vertical beam sizes					
	MAD	$1.012{\rm nm}{\pm}0.001{\rm nm}$	$1.28\mathrm{nm}{\pm}0.02\mathrm{nm}$	$2.30\mathrm{nm}{\pm}0.04\mathrm{nm}$		
	DIMAD	$1.012\mathrm{nm}{\pm}0.001\mathrm{nm}$	$1.30\mathrm{nm}{\pm}0.02\mathrm{nm}$	$2.64\mathrm{nm}{\pm}0.09\mathrm{nm}$		
	Merlin	$1.012\mathrm{nm}{\pm}0.001\mathrm{nm}$	$1.30\mathrm{nm}{\pm}0.02\mathrm{nm}$	$2.20\mathrm{nm}{\pm}0.07\mathrm{nm}$		
*	Placet	$1.012\mathrm{nm}{\pm}0.001\mathrm{nm}$	$1.30\mathrm{nm}{\pm}0.02\mathrm{nm}$	$2.25\mathrm{nm}{\pm}0.05\mathrm{nm}$		

* Placet simulations by D. Schulte

The codes show a good agreement !

- No significant differences for results of tracking without SR
- With SR differences up to 4 % (horiz.) and 20 % (vert.), differences not exceeding 0.5 nm

So far so good, but ...

3. Comparison for the NEW CLIC BDS lattice (fflc02)

First presented at LC02 (Feb. 2002), performance presented at EPAC2002

NanoBeam2002, 2-6 September 2002 – Lausanne, Switzerland

Stefano Redaelli, Simulation Codes for Luminosity Performance, page 12

And with Synchrotron Radiation

Horizontal: 3.3/50 particles > 3 σ (~ 6.6 %)

Vertical : 7.6/50 particles > 3 σ (10-15 %)

3.8/50 particles > 6 σ (~ 7.5 %) !!

Now the bunch looks much bigger....

but the its core is still "small"!

Issue for the Collimation? They do not come

Stefano Redaelli, Simulation Codes for Luminosity Performance, page 13

Comparison of the different codes (1)

• 5 sets of 50000 particles (same part.) \rightarrow Avg beam size \rightarrow Err = StdDev/ $\sqrt{N_{set}-1}$

Horizontal beam sizes

	No ΔE - No SR	$\Delta E/E=1\%$ - No SR	$\Delta E/E=1\%$ - SR		
MAD	$38.87\mathrm{nm}{\pm}0.06\mathrm{nm}$	$74.91{ m nm}{\pm}1.09{ m nm}$	$96.28\mathrm{nm}{\pm}0.73\mathrm{nm}$		
DIMAD	$37.60\mathrm{nm}{\pm}0.05\mathrm{nm}$	$106.32\mathrm{nm}{\pm}1.38\mathrm{nm}$	$99.04\mathrm{nm}{\pm}1.42\mathrm{nm}$		
Merlin	$37.53\mathrm{nm}{\pm}0.05\mathrm{nm}$	$103.33\mathrm{nm}{\pm}1.37\mathrm{nm}$	$129.65\mathrm{nm}{\pm}1.51\mathrm{nm}$		
Placet	$37.09\mathrm{nm}{\pm}0.05\mathrm{nm}$	$108.99\mathrm{nm}{\pm}1.47\mathrm{nm}$	$99.33, nm \pm 1.31 nm$		
Vertical beam sizes					
MAD	$0.937{\rm nm}{\pm}0.002{\rm nm}$	$1.432\mathrm{nm}{\pm}0.013\mathrm{nm}$	$3.050{\rm nm}{\pm}0.036{\rm nm}$		
DIMAD	$0.562\mathrm{nm}{\pm}0.001\mathrm{nm}$	$1.824\mathrm{nm}{\pm}0.012\mathrm{nm}$	$3.349\mathrm{nm}{\pm}0.056\mathrm{nm}$		
Merlin	$0.569\mathrm{nm}{\pm}0.001\mathrm{nm}$	$1.814\mathrm{nm}{\pm}0.012\mathrm{nm}$	$4.038{\rm nm}{\pm}0.033{\rm nm}$		
*Placet	$0.571{\rm nm}{\pm}0.001{\rm nm}$	$1.904{ m nm}{\pm}0.013{ m nm}$	$3.416{\rm nm}{\pm}0.026{\rm nm}$		

Relevant differences if the particle standard deviations are considered (Differences up to 30 % for bunches with energy spread)

• Without SR, MAD shows larger discrepancies. Merlin larger discrepancies with SR. * Placet simulations by D. Schulte

Comparison of the different codes (2)

Now beam sizes calculated as σ of the fitting Gaussian distribution

	No ΔE - No SR	$\Delta E/E=1\%$ - No SR	$\Delta E/E=1\%$ - SR		
MAD	$38.35\mathrm{nm}{\pm}0.14\mathrm{nm}$	$42.83\mathrm{nm}{\pm}0.08\mathrm{nm}$	$55.39\mathrm{nm}{\pm}0.07\mathrm{nm}$		
DIMAD	$37.45\mathrm{nm}{\pm}0.12\mathrm{nm}$	$44.67\mathrm{nm}{\pm}0.08\mathrm{nm}$	$54.59\mathrm{nm}{\pm}0.17\mathrm{nm}$		
Merlin	$37.38\mathrm{nm}{\pm}0.13\mathrm{nm}$	$44.48\mathrm{nm}{\pm}0.07\mathrm{nm}$	$57.49\mathrm{nm}{\pm}0.13\mathrm{nm}$		
Placet	$36.96\mathrm{nm}{\pm}0.12\mathrm{nm}$	$43.99\mathrm{nm}{\pm}0.08\mathrm{nm}$	$54.12\mathrm{nm}{\pm}0.17\mathrm{nm}$		
Vertical beam sizes					
MAD	$0.793{\rm nm}{\pm}0.001{\rm nm}$	$0.758{\rm nm}{\pm}0.003{\rm nm}$	$0.680{\rm nm}{\pm}0.001{\rm nm}$		
DIMAD	$0.524\mathrm{nm}{\pm}0.001\mathrm{nm}$	$0.590\mathrm{nm}{\pm}0.001\mathrm{nm}$	$0.800\mathrm{nm}{\pm}0.002\mathrm{nm}$		
Merlin	$0.527\mathrm{nm}{\pm}0.001\mathrm{nm}$	$0.601\mathrm{nm}{\pm}0.001\mathrm{nm}$	$0.688\mathrm{nm}{\pm}0.002\mathrm{nm}$		
*Placet	$0.523\mathrm{nm}{\pm}0.001\mathrm{nm}$	$0.606\mathrm{nm}{\pm}0.001\mathrm{nm}$	$0.775{\rm nm}{\pm}0.002{\rm nm}$		

Horizontal beam sizes

* **Placet** simulations by D. Schulte

• Now much smaller beam size (close to theoretical values)

- Sigmas agree with effective beam sizes from GuineaPig simulations (D.S.)
- Better agreement between the codes (but MAD different without SR)

What 'bout the ultimate **luminosity** prediction?? ... what really matters...

Comparison of the different codes (3)

Luminosity calculated with **GuineaPig** for "real" case ($\Delta E + SR$)

Luminosity - $\Delta E/E = 1\% + SR [10^{35} cm^{-2} s^{-1}]$

		Placet
MAD	$0.817 {\pm} 0.003$	$0.820 {\pm} 0.003$
DIMAD	$0.747 {\pm} 0.005$	$0.755 {\pm} 0.005$
Merlin	$0.704 {\pm} 0.002$	$0.679 {\pm} 0.003$

Different models for SR:MAD \rightarrow Re-accelerate beam after SR lossesDIMAD \rightarrow No compensationMerlin \rightarrow Rescale magnet strengthPlacet \rightarrow Can simulate all above cases!

- Difference between codes related to different models for SR
 Good agreement if same model is used (Placet results, by D. Schulte)
- Differences in luminosity predictions up to 15 % (~ 0.1 10³⁵ cm⁻² s⁻¹)
- Side remark CLIC nominal luminosity of ~ 0.75 10³⁵ cm⁻² s⁻¹ (\rightarrow FZ' talk...)

4. Conclusions

- Detailed comparison of tracking codes for BDSs of linear colliders has been presented, in view of the simulation of luminosity performance
- All tools are set up and ready for luminosity performance study
- Comparison based on *Gaussian fits* of particle distributions and on *luminosity calculations* (standard deviation of particle position not adequate for bunches with long tail)

Estimated beam sizes are consistent with the effective values from *GuineaPig* luminosity simulations

- Codes in *good agreement* for luminosity prediction if same SR model is used – all suitable for future studies
- Considerable differences for halo particles at large amplitudes (say > 3σ). Important?? \rightarrow Question for the specialists...