26th Advanced ICFA Beam Dynamics Workshop on Nanometre-Size Colliding Beams September 2-6, 2002 at Lausanne

Development of Soft X-ray Source using Laser Compton Scattering

<u>R. Kuroda*</u>, S. Kashiwagi*, M. Washio*, T. Hirose*, Y. Hama*, J. Urakawa**, H. Hayano**, X. J. Wang***

> * Waseda University, Japan ** KEK, Japan *** BNL, USA

Out Line	
Introduction	
 About our project 	
 Approach to the soft X-ray source 	
•X-ray microscopy	
 High quality electron beam generation system 	
 Photo-cathode RF-gun system 	
•Ng:YLF Laser system	
 Jitter measurement of laser 	
Time domain demodulation technique	
 Electron beam diagnostics 	
 Laser Compton scattering experiment 	
 Experimental setup 	
 Estimation of generated X-ray 	
 Back ground measurement 	
•Summary & Future Plan	

Research Project at Waseda University

1999~

New research Project *"High-Tech Research Center Project"* (Ministry of Education, Culture, Sports, Science and Technology & Waseda University)

Purpose

0000/0	High quality electron beam generation and Application Experiment (pulse radiolysys and soft X-ray generation)
2000/9	Construction of new building completed
2001~	Main components installed
2002/4	Approval for our rf-gun system

~ Beam Experiment

High quality electron beam generation

Photo-cathode RF-GUN system

(BNL type 1.6 cell S-band rf-gun)

1. Low emittance beam

High field acceleration

--- suppress emittance growth due to space charge effect

2. Short bunch beam

Time structure of beam is controlled laser pulse Not necessary buncher system \rightarrow compact

> •Stable rf source •Stable laser system

•Beam diagnosis

Laser System

Laser Medium I Pulse Width (FWHM): Pulse Energy UV (262 nm) / IR(1047 nm) Repetition Rate

Nd:YLF 10 ps

200 uJ / 2 mJ 1-25 Hz (usually 5 Hz)

•Timing stabilizer (119MHz seed light)

 Intensity stabilizer (25 Hz UV light)

Beam line and Beam diagnostics

Emittance Measurement Results and Simulation Results (Parmela)

Requirement of Beam Parameters

Electron beam

Beam energy	5.0 MeV
Bunch charge/bunch	2 nC
Bunch length (FWHM)	10 ps
Beam size at focal point (σx/σy)	100/100 μm

Nd:YLF laser

Wave length	1047 nm
Energy/pulse	100 mJ
Pulse length (FWHM)	10 ps
Beam size at focal point (σx/σy)	30/30 μm

Generated X-ray

Collision angle (φ)	Ave. photon energy [eV]	Number of Photons [/ pulse]
20	435 (1.1% band width)	1.1 x 10 ⁵
60	333 (1.1% band width)	3.4 x 10 ⁴
90	222 (1.1%band width)	2.0 x 10 ⁴
(within 20 m rad of detected angle)		

Our Present Status

Electron beam

Nd:YLF laser

Beam energy	5.0 MeV
Bunch charge/bunch	0.5 nC
Bunch length (FWHM)	10 ps
Beam size (σx/σy)	300/300 μm

Wave length	1047 nm
Energy/pulse	1 mJ
Pulse length (FWHM)	10 ps
Beam size (σx/σy)	60/60 μm

Generated X-ray (within 20 m rad of detected angle)

Collision angle (φ)	Ave. photon energy [eV]	Number of Photons [/ pulse]
20	435 (1.1% band width)	26
60	333 (1.1% band width)	11
90	222 (1.1% band width)	6

Can't detect the X-ray signal
Laser Amplification

Summary & Future Plan

- Preparing of soft X-ray generation experiment and electron beam characterization have been started.
- We have to perform the optimization of all components.

2002 September ~

 Construct the Laser Amplifier System
 Start the Experiment of Laser Compton Scattering at 20° of the collision angle

2003 ~

•Soft X-ray generation will be performed

at 20° , 60° , 90° of the collision angle

In Future

Application to the soft X-ray microscopy
Construct the X-ray focusing system

for biological observation.