

Advanced Photon Source

Excitements and Challenges for Future Light Sources Based on X-Ray FELs

26th ADVANCED ICFA BEAM DYNAMICS WORKSHOP ON NANOMETRE-SIZE COLLIDING BEAMS

Kwang-Je Kim

Argonne National Laboratory and The University of Chicago Lausanne, Switzerland September 2-6, 2002

SASE FELs

Transverse Coherence

Courtesy of Sven Reiche, UCLA

Peak Brightness Enhancement From Undulator To SASE

 $B = \frac{\text{\#of photons}}{\Omega_x \ \Omega_y \ \Omega_z} \qquad (\Omega_i\text{- phase space area})$

	Undulator	SASE	Enhancement Factor
# of photons	αN_e	$\alpha N_e N_{l_c}$	$N_{l_c} \sim 10^6$
$\Omega_{x}\Omega_{y}$	$(2\pi\epsilon_x) (2\pi\epsilon_y)$	$(\lambda/2)^2$	10^{2}
$\Omega_{ m Z}$	$\frac{\Delta\omega}{\omega} \cdot \left(\frac{\sigma_z}{c}\right) = 10^{-3} \times 10 ps$	$\frac{\Delta\omega}{\omega} \cdot \left(\frac{\sigma_z}{c}\right) = 10^{-3} \times 100 fs$	10 ²

 l_c -coherence length

How bright are different light sources ?

Projects:

TESLA

Welconseto the Tesis Technical Design Report

http://tesia.desy.de/new_pages/TDR_CD/stat.html

TESLA

The Superconducting Electron-Positron Linear Collider with an Integrated X-Ray Laser Laboratory Technical Design Report

Pari I	Executive Summary
Part II	The Accelerator
Part III	Physics at an e ⁺ e' Linear Collider
Part IV	A Detector for JESLA
Part V	The X-Ray Free Electron Laser
Part VI	Append kes

TESLA Brochure (PDF document, 537 MB)

6/11/01 7:04 PM

1 of 2

LCLS: Parameters & Performance

FEL Radiation Wavelength	<u>15.0</u>	<u>1.5</u>	Å		
Electron Beam Energy	4.54	14.35	GeV		
Repetition Rate (1-bunch)	120	120	Hz		
Single Bunch Charge	1	1	nC		
Normalized rms Emittance	2.0	1.5	mm-mrad		
Peak Current	3.4	3.4	kA		
Coherent rms Energy Spread	<2	<1	10 ⁻³		
Incoherent rms Energy Spread	<0.6	<0.2	10 ⁻³		
Undulator Length	100	100	m		
Peak Coherent Power	11	9.3	GW		
Peak Spontaneous Power	8.1	81	GW		
Peak Brightness *	1.2	12	10 ³²		
* photons/sec/mm ² /mrad ² /0.1%-BW					

Performance Characteristics

Self Seeding Scheme for Full Longitudinal Coherence

LCLS - The First Experiments

Team Leaders:

Dan Imre, BNL

international team of ~45 scientists working with accelerator and laser physics communities

Atomic Physics Plasma and Warm Dense

Brian Stephenson, APS

Phil Bucksbaum, Univ. of Michigan

Richard Lee, LLNL

Structural Studies on Single **Particles and Biomolecules**

Janos Hajdu, Uppsala Univ.

Accelerator System

RF Photo-cathode gun

Emittance Preservation in Linacs
 transverse wakefields
 CSR microbunching instability

misalignments & chromaticity

Machine Stability
 jitter tolerance budget
 simulation of budget

LCLS: System Components

RF Photo-Cathode Gun

X-band RF used to Linearize Compression (f = 11.424 GHz)

Coherent Synchrotron Radiation (CSR)

- Induced energy spread breaks achromatic system
- Causes bend-plane emittance growth (short bunch is worse)
- Powerful radiation generates energy spread in bends bend-plane emittance growth

CSR Micro-bunching and Projected Emittance Growth

Cell structure of the LCLS undulator line

- Horizontal Steering Coil
 - Vertical Steering Coil

()

- Beam Position Monitor
 - X-Ray Diagnostics

Quadrupoles

Start-to-End Tracking Simulations

• Track entire machine to evaluate beam brightness & FEL

• Track machine many times with jitter to test stability budget (M. Borland, ANL)

Magnetic Measurement of the Prototype

Potential for Damage to X-Ray Optics

• In Hall A, low-Z materials will accept even normal incidence. The fluences in Hall B are sufficiently low for standard optical solutions. Even in the Front End Enclosure (FEE), low Z materials may be possible at normal incidence above ~4 keV, and at all energies with grazing incidence. In the FEE, gas is required for attenuation at < 4 keV

SASE Demonstration Experiments at Longer Wavelengths

• IR wavelengths:

UCLA/LANL ($\lambda = 12\mu$, G = 10⁵) LANL ($\lambda = 16\mu$, G = 10³) BNL ATF/APS ($\lambda = 5.3\mu$, G = 10, HGHG = 10⁷ times S.E.)

• Visible and UV:

TESLA Test Facility (DESY): $E_e = 390 \text{ MeV}$, $L_u = 15 \text{ m}$, $\lambda = 42 \text{ nm}$ VISA (BNL-LANL-LLNL-SLAC-UCLA): $E_e = 70 \text{ MeV}$, $L_u = 4 \text{ m}$, $\lambda = 0.8 \mu$ APS LEUTL: $E_e \le 700 \text{ MeV}$, $L_u = 25 \text{ m}$, 120 nm $\le \lambda \le 530 \text{ nm}$

All successful!

LOW-ENERGY UNDULATOR TEST LINE PARAMETERS

Optical Intensity Gain

ARGONNE NATIONAL LABORATORY

transv. coherence
 long. coherence
 fluctuations

1) Transverse coherence should be almost 100 % at saturation

Observation of diffraction pattern at TTF FEL:

TTF2: Soft-X ray User Facility / Overview

Future Light Sources based on X-ray FELs

- A leap in electron beam and photon beam technology
- A leap in x-ray science
- Proposals around the world for UV and x-ray facilities
- LCLS turns on in 98

Acknowledgement

 I thank my colleagues at SLAC, DESY, and ANL for making these excellent VGs available to me !