Energy Calibration Overview

- Baseline design:
 - $-\delta E/E \sim 1 \times 10^{-4}$ is required from physics
 - if better precision needed later ⇒ redesign
 - Should have something like a 50m footprint
 - put this in your lattice designs
 - dL/dE measurement needed somewhere
 - diagnostics downstream of IP will be important
 - need a decent extraction line environment (★)
- Redundant measurements will be necessary
 - cross-checks required
 - more than one technique/location

N O EAM \mathbf{m} Z

ECAL Needs and R&D Plan

- Design Studies (Lattice Locations, Run the Numbers)
 - Schemes:
 - BPM-based Spectrometer
 - WiSRD
 - Laser backscattered electron spectrometer
 - Polarization Rotation

Hardware in tunnel

- We should be able to arrive at a consensus as to which methods are most promising!
- Evaluation of Operational issues
 - measurement time required
 - diagnostics provided (bunch-by-bunch?, etc.)

N EAM m

ECAL R&D II

- RF BPMS:
 - ECAL probably most demanding consumer (~20nm)
 - resolution, electronic stability, stability of null point
 - sensitivity to beam tilts
 - need experiments! (ATF?)
- "Straight Line" techniques
 - optical straightness monitor (Oxford)
 - stretched wire systems (CERN)
 - need experiments!
- Mechanical stability
 - nanomovers (technical demonstration needed)

ECAL R&D III

- Beam Tests Required
 - too many surprises in past experiences
 - careful design, iteration will be necessary
 - try to get as close as possible to LC conditions