N N EAM m Z Z Z Z Z Z Z Z

Session 5: Mini-Workshop on Energy Calibration at Linear Colliders

Chairs: Bernd Dehning (CERN) Mike Hildreth (Notre Dame)

September 3, 2002

N N EAM m ZV

Session 5: Mini-Workshop on Energy Calibration at Linear Colliders Agenda:

- Introduction/Motivation
- Overview of SLAC Workshop
- LEP Spectrometer Experience
- The SLAC WISRD
- TESLA R&D
- Polarization Rotation
- Brainstorming

Mike Hildreth Mike Hildreth Guy Wilkinson Marc Ross Alex Ljapine Valery Telnov All Energy Calibration at Linear Colliders: Introduction and Motivation

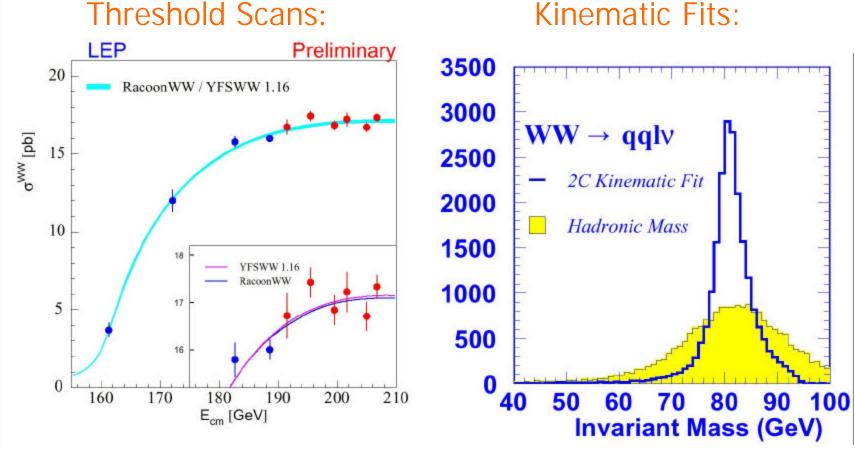
> Mike Hildreth University of Notre Dame (Université de Notre Dame du Lac)

September 3, 2002

Instrumentation Needed for Physics

We will need measurements of

- Beam Energy(*)
- Beam Polarization
- Luminosity and Luminosity Spectrum


to various degrees of precision in order to fully exploit the physics program of the LC

Many conceptual ideas out there, few real design studies...

N N EAM m ZV

Needs for Energy Calibration

Physics needs will be similar to what we had at LEPII:

September 3, 2002

Required Precision

Overall Energy Scale set by expected statistical errors and simulated systematics

- *m*_{top} from top threshold
- $-m_{Higgs}$ from direct reconstruction
- "m_{slepton}" (new physics) from either technique
- \Rightarrow require $\delta E_{beam}/E_{beam} \sim 100-200 \text{ ppm}$

Also, differential luminosity spectrum dL/dEneeds to be known to ~1% for many measurements \Rightarrow Hard?!

September 3, 2002

Possible Ultimate Precision

For E_{beam}, two benchmark measurements give the ultimate requirements on precision:

- new Z lineshape scan
 - $\delta E_{\text{beam}} < 500 \text{ keV}$ (1×10⁻⁶ relative)
- WW threshold measurement of M_W $\delta E_{\text{beam}} < 6 \text{ MeV}$ (3×10⁻⁵ relative)

Both of these require different modes of accelerator operation to minimize beamstrahlung, energy spread, etc.

★May be needed if no Higgs/SUSY is found

Other (General) Issues:

- Frequency of measurement
 - Luminosity averaged
 - Operator tuning
 - train-to-train
 - bunch-to-bunch

~minutes

~months

~seconds to msec

(need detectors)

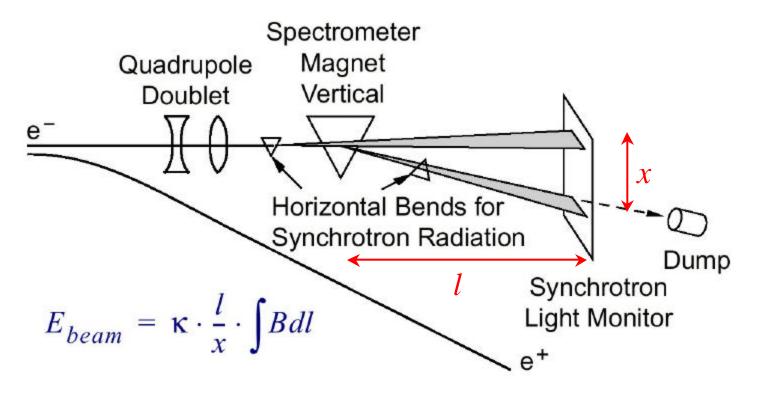
(?)

- ~µsec to 1 ns
- Location of measurement
 - Upstream/downstream of IP (both)
 - at IP (luminosity-weighted)
 - elsewhere?
- Time required to attain sufficient precision
 - pulse-by-pulse, stolen pulses, or dedicated runs?

Overview of ECAL Techniques

Beam Instrumentation

- Two different spectrometer concepts:
 - SLAC WISRD
 - LEP In-Line Spectrometer
- Møller scattering
- "Wire" scanner at high dispersion point

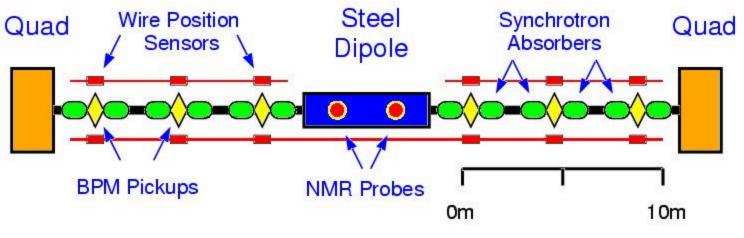

"Physics" Techniques

- Radiative Returns using Z mass ($\mu^+\mu^-\gamma$)
- Muon momentum?

Your Idea Here...

The SLAC WISRD

• "Wire-Imaged Synchrotron Radiation Detector"


Distance between synchtrotron stripes and $\int Bdl$ gives E

WISRD Technology at LC?

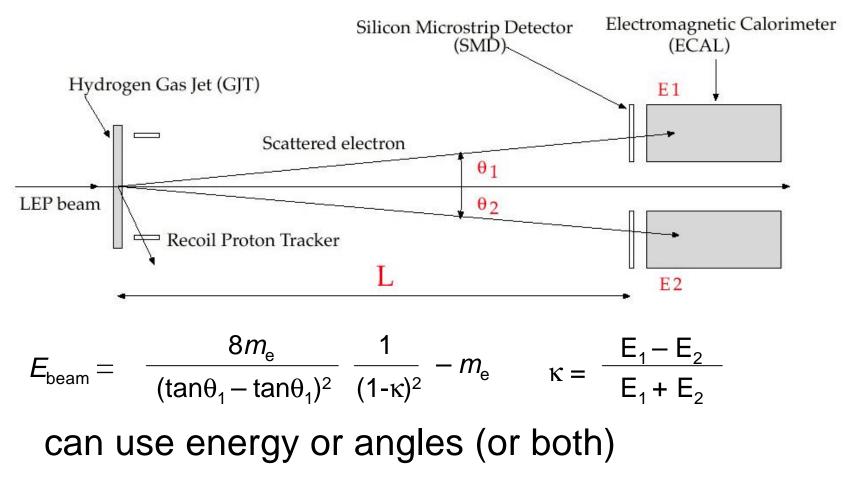
- Systematic errors were driven by
 - alignment
 - detector technology
- For LC:
 - stronger bend? (minimize size of spectrometer)
 - better detectors? (silicon strips? quartz strips?)
 - Useful downstream of IP? (effects of tails?)
 - is dL/dE measurement possible?

BPM-Based Spectrometer (LEP)

- "In Line" Spectrometer with fixed bend angle
- BPMs used to measure beam position=angle
- cross-calibrated against Resonant Depol.

 $E \propto \frac{1}{\theta} \int BdI$ - Only a relative energy measurement - Dipole mapped at many energies

BPM Spectrometer at LC


• RF BPMs will be necessary

- 10's of nm resolution is needed
- Mechanical stability
 - For an absolute measurement, "must" have a "straight line" reference \Rightarrow BPMs must move!
- Electronic stability
 - ~30nm resolution must be stable over the time necessary for measurement
 - wide dynamic range would be nice, too...
- Understand implications of "absolute" msmt
 - are NMRs good enough, etc?

September 3, 2002

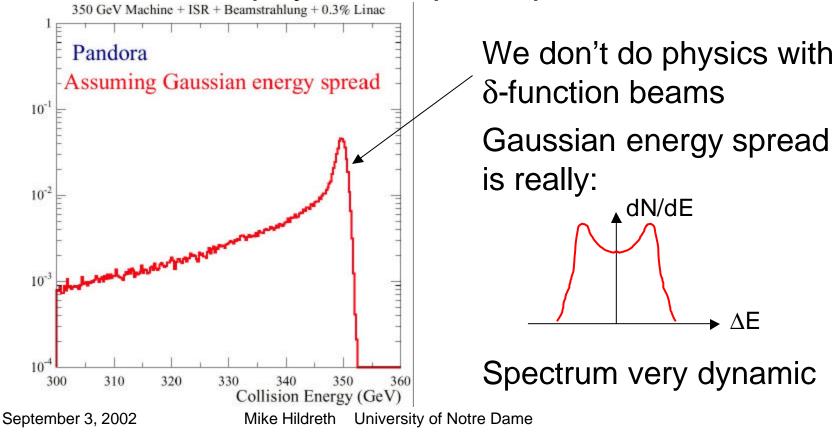
Møller Scattering

• Scattered electron and recoil proton are seen

September 3, 2002

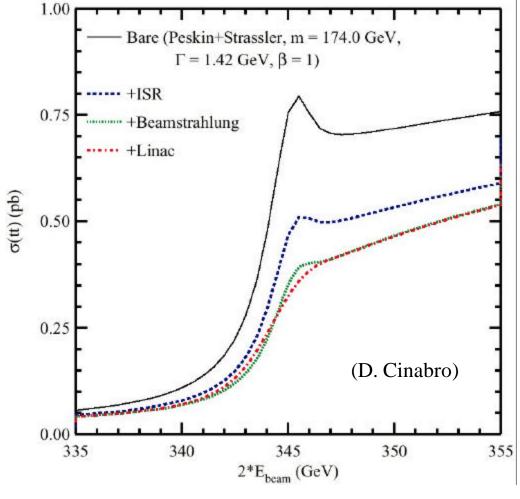
Møller at LC

- LEPII Study claimed with L = 30 meters, angular acceptance of 2-6 mrad, and
 - $\sigma_{E}/E = 3.7/[E(GeV)]^{\frac{1}{4}}$ (LEP SiW lumi monitor)
 - Statistical error of 2 MeV in 30 minutes (600Hz rate)
 - Systematics of about 2 MeV
- BUT
 - needs hydrogen gas jet target
 - assumes something like 1 µm detector resolution
- Complete study needed for LC


Radiative Returns

- Use the Z resonance to calculate boost of CofM ⇒ beam energy
 - $e^+e^- \to \gamma Z \to \mu^+\mu^- \, \gamma \,$ (best mode)
 - used at LEP to cross-check ECal
- 1 • But, at high 0 1 80 0.9 $\Theta = \theta_1 = \theta_2$ energy, the angles get very small! 0.8 E_{CM} Θ 0.7 500 GeV 360 mrad θ_{2} 0.6 $e^+e^- \rightarrow \mu\mu\gamma$ 1 TeV 180 mrad 0.5 200 300 400 500 600 800 1000 needs absolute angle **Collision Energy (GeV)**

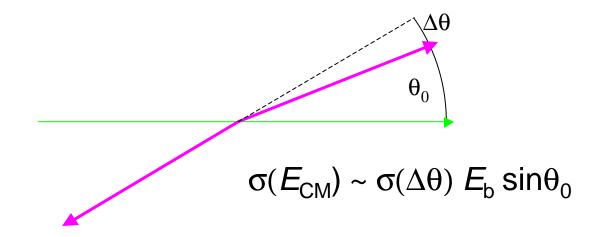
September 3, 2002


Luminosity and dL/dE Measurement

- L and dL/dE are both important for tuning
 - FF instrumentation is in other session now...
- BUT, some physics requires precise dL/dE:

Physics Example

• top Threshold scan:



Model: Flat tail + Gaussian core $R = A_{\text{tail}} / A_{\text{core}}$ $dm_{t}/dR = 40 \text{ MeV}/1\%$ $d\Gamma_{t}/dR = 100 \text{ MeV}/1\%$ Comparable to other systematics Need to measure "R" to sufficient precision

September 3, 2002

dL/dE Measurement

• Old idea (Miller): Bhabha acolinearity

- Can measure acolinearity with forward Si
- Can use calorimetry (SiW lumi monitors)
 - neither has been simulated with real backgrounds (segmentation!)

N

N

EAM

m

Z

Comments/Questions for Workshop

- Can the basic required precision be achieved?
- What technology(ies) are most likely?
 - where will they fit in the lattice designs?
- Worst case scenario: No Higgs, no SUSY
 - will need to do incredibly precise Z and W measurements
 - Better have a design that will do at least as well as $\delta E_{beam}/E_{beam}$ ~3×10 $^{-5}$
 - An extra 100m of beamline in the middle of the accelerator will be expensive later on...
- How to measure correlations between L,E,P?

More Comments

- "Brute Force" isn't much fun!
 - most of the methods proposed here "only" need a bit of clever engineering
 - Clever Physics ideas needed!
- Hopefully, some will arise during this session/workshop...