### The gravitational wave detector (((Q))/VIRGO

for the VIRGO collaboration

Raffaele Flaminio

Laboratoire d'Annecy-le-Vieux de Physique des Particules (LAPP)

IN2P3 - CNRS

1

#### Summary

I. A bit of gravitational wave physics

II. Gravitational wave detection

III. The VIRGO design

IV. Status of VIRGO



#### I. A bit of gravitational wave physics



• GW produced by masses acceleration

$$h \approx \frac{2G}{c^4} \frac{d^2 Q}{dt^2} \frac{1}{d}$$
 d = source distance  
Q = quadripole moment

• Small coupling factor

 $\Rightarrow GW \text{ generation on earth not possible} \\ \Rightarrow \text{ astrophysical sources}$ 



• Energy loss due to gravitational wave emission (excellent agreement with GR theory)



$$\frac{\dot{P}_{obs}}{\dot{P}_{theorie}} = 1.0023 \pm 0.005$$

(Taylor et al. 1992)

• stars will coalesce in 10<sup>8</sup> years

### (((Q)))

#### **Coalescing binaries**

• Binaries formed by compact stars (NS/NS, NS/BH, BH/BH)



- Event rate:
- statistical analysis  $\sim 1/10^5$  yr in the Milky Way
  - ~ 3 / yr inside a radius of 200 Mpc (Narayan et al. 1991, Phinney 1991)
- evolutionary model ~ 3 / yr inside a radius of 40 Mpc (Lipunov et al. 1994)

### ((O)) Coalescing binaries as physics lab

- *Standard candles:* distance of the source can be found out of the waveform of a NS/NS [Schutz, *Nature*, 1986]
- *Test for GR*: accurate measurements of inspiral waveform can test gravity in the strong field regime [Damour, Esposito-Farese, gr-qc/9803031]
- Nuclear physics:

before coalescence waveform sensitive to the equation of state [Cutler *et al.*, *PRL*, **70**, 1993]



#### Other sources in the sky

- Supernovae
  - star core collapse (non-spherical collapse)
  - impulsive event
  - waveform and amplitude difficult to predict
  - rates: tens/year in the VIRGO cluster
- Rotating neutron stars
  - GW emitted if non perfectly spherical star
  - periodical signals, amplitudes unknown, upper limits from pulsars slow down
  - ~ 800 pulsars known today, ~10<sup>9</sup> neutron stars in the galaxy
- Relic stochastic background
  - imprinting of the early expansion of the universe
  - stochastic signals (two correlated detectors needed)
  - signal too weak if standard inflation, signals larger from some string models



### The goals of VIRGO

- First direct detection of gravitational waves
- Study of gravitational force
  - weak force not well known
  - small amount of data available in strong field conditions and on non-linear effects
- New window on the universe
  - signals emitted by coherent motion of large quantity of matter
  - very small absorption through matter



#### **II.** Gravitational wave detection

### ((O)) GW detection using interferometers

• Gravitational wave effect (spin 2 wave)

• Michelson interferometer



#### (((Q))) **Photons shot noise** • GW $\Rightarrow$ phase shift $\Delta \Phi = \frac{4\pi}{\lambda} hL$ • Minimum measurable phase shift $\propto N_{\gamma}^{-\frac{1}{2}}$ $\widetilde{\phi} = \sqrt{\frac{2\hbar\omega}{P}}$ $\widetilde{h} \geq \frac{\lambda}{4\pi L} \sqrt{\frac{2\hbar\omega}{P}}$ L L • with L = 100 km and P = 1 kW $h \sim 3.10^{-23}$ Ρ



#### Photons shot noise

$$\widetilde{h} \geq \frac{\lambda}{4\pi L} \sqrt{\frac{2\hbar\omega}{P}}$$

• Effective length increased with <u>Fabry-Perot</u>

$$L' = \frac{2}{\pi} \cdot F \cdot L$$
 (F = finesse FP)

L' = 100 km with L = 3 km

• Amount of photons increased using <u>recycling mirror</u>

 $P' = R \cdot P$  (R = recycling factor)

P' = 1 kW avec P = 20W





#### Seismic noise

• Seismic noise spectrum

for frequencies  $f \ge few Hz$ larger at low frequency

m/Sqrt(Hz)

- Main limitation at low frequencies
- Very large attenuation required
- Noise level sensitive to human activit (agricultural activity in Cascina)
- Security distances
  - $-\operatorname{road} > 500 \mathrm{m}$
  - agricultural activity > 100 m

$$\tilde{x}_s = \frac{a}{f^2} \frac{m}{\sqrt{Hz}}$$
 (a  $\approx 10^{-6} - 10^{-7}$ )







#### III. The VIRGO design



### The VIRGO project

- French-Italian collaboration
- 11 laboratories:

LAPP Annecy, INFN Firenze, INFN Frascati, IPN Lyon, INFN Napoli, Observatoire de Nice, LAL Orsay, ESPCI Paris, INFN Perugia, INFN Pisa, INFN Roma

- About 150 persons involved (physicist + engineers + technicians)
- Funded by INFN in Italy and CNRS in France
- Set up a 3 km arm long interferometer near Pisa (Italy)
- Construction started in 1996





- Dimensions:  $\emptyset$  35 cm, 10 cm thick
- Mass: 20 kg
- Suspended by 4 steel wires ( $\emptyset$  200µm)
- Made of fused silica



#### The mirrors



- Coating made in VIRGO
- Metrology made in VIRGO
- Absorption and diffusion < few ppm
- Wave-front  $< \lambda/100$  18



2002

#### Seismic isolation

- Seismic isolator:
- cantilever springs for vertical isolation
- pendulums for horizontal isolation
- an inverted pendulum as pre-isolator
- Six stages in cascade
- Total attenuation ~  $10^{10}$  @ 10 Hz





### (((())))

#### Interferometer control

- Large seismic attenuation in the detection band (above few Hz)
- No attenuation or amplification (due to suspension internal resonance's) below few Hz
- Large mirrors motion/drifts at low frequency ~  $10^{-4}$ - $10^{-3}$  m



Active controls needed
1) to keep the interferometer aligned
2) to maintain the interferometer in required interference conditions

Lausanne, September 2, 2002



- Use accelerometers to sense top stage motion respect to an inertial frame (above 30 mHz)
- Use LVDT's to sense top stage motion respect to ground
- Feedback to top stage using electro-magnetic actuators
- $\bullet$  Reduce mirror motion to 1  $\mu m$  above 30 mHz

Lausanne, September 2, 2002

Filter

Seven

Marionette

GROUNI

Payload ~

# ((O)) Interferometer alignment

- Coarse alignment: CCD camera looking at marks on mirror (10 µrad)
- Finer alignment: CCD camera and optical lever (1  $\mu$ rad)
- Final alignment using interference signal (1 nrad)
- Actuation through coils acting on 'marionetta'
- Digital control



#### Interferometer length control

- Interferometer operation needs to control cavities length accurately ~  $10^{-12}$  m
- $\bullet$  Residual motion above 30 mHz reduced to 1  $\mu m$  using inertial damping
- Further reduction using interferometer signal

((O))

Split signal in bands and use suspension actuators hierarchically
3 km FP cavity
tidal strain
Lausanne, September 2, 2002



- Larger drift correction using inverted pendulum
- Fine corrections applied directly to mirror 24

### *[(O)]] Laser frequency stabilization*

- Free running laser: frequency stability ~ 1 kHz
- Pre-stabilization using input mode-cleaner as reference cavity ( $\sim 10^{-2}$  Hz/ $\sqrt{Hz}$ )
- Final stabilization using interferometer as reference cavity ( $\sim 10^{-6}$  Hz/ $\sqrt{Hz}$ )









#### IV. Status of VIRGO



#### Civil engineering

- 3 km arms and all buildings completed last winter
- Central area available since 1998



## *((O)))* The central interferometer (CITF)



#### *Vacuum chambers installation*



### ((O)) Suspensions installation







### (((0)))

### CITF commissioning

- Main purposes
- verify technical choices made for Virgo
- gain experience
- train people
- Achievements
- interferometer controlled
- performances and reliability understood
- 5 engineering runs performed (E0-E4)
- End of commissioning last July:
- few changes planned for Virgo

Lausanne, September 2,

2002



### (((Q)))

#### Tube installation

- $2 \times 3 \text{ km} \rightarrow 400 \text{ modules (15 m)}$
- all modules installed
- few links to be installed
- vacuum achieved ~ 3 à 5  $10^{-10}$  mbar





• Installation will be complete next October



#### Conclusion: next steps

- 2002 Upgrade CITF to Virgo
- Suspensions and mirrors installation in the end buildings
- Installation of final mirrors in the central area
- 2003 Virgo commissioning
- Set-up control systems
- First engineering runs
- 2004 First science run

### ((O))) VIRGO planned sensitivity

