Challenges in Future Linear Colliders

Swapan Chattopadhyay Jefferson Lab, USA

> and Kaoru Yokoya, KEK, Japan

> > ICFA Nanobeam '02 Nanometer-Size Colliding Beams Sept 2-6, 2002 Lausanne, Switzerland

Thomas Jefferson National Accelerator Facility

Why LC (Linear Collider) ?

- p-p (proton-proton) colliders can reach higher energy than e⁺e⁻, but
 - > The energies of the constituents (quarks) are lower
 - p-p interaction is too complicated not easy to analyze the collision data
- e⁺e⁻ colliders are cleaner
- p-p and e⁺e⁻ are complementary
 - Particle discovery by p-p colliders
 - Finer study by e⁺e⁻ colliders

Jefferson Lab Thomas Jefferson National Accelerator Facility

⇒LHC would be "gainful" in <u>discovery</u>!

⇒LC would be "useful" in <u>understanding</u>!

- Lao-tzu

"Thirty spokes unite at the wheel's hub; It is the center hole [literally, "from their not being"] that makes it useful. Shape clay into a vessel; It is the space within that makes it useful. Cut out doors and windows for a room; It is the holes which make it useful. Therefore profit comes from what is there; Usefulness from what is not there."

Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Dept. Of Energy

Tefferson C

e⁺e⁻ Collider's in the World

LEP

- •The largest e+e- collider **LEP** at CERN reached about 200GeV
- •High energy electron on circular orbit looses energy by synchrotron radiation
- •The energy loss in one turn is proportional to

(beam energy) '

(radius)

•→ impossible to build higher energy e+e- ring

 $\bullet \rightarrow$ straight collider

efferson C

Thomas Jefferson National Accelerator Facility

What is Linear Collider

Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Dept. Of Energy

efferson Pab

The First Linear Collider SLC

(Stanford Linear Collider)

Use only 1 (existing) linac
2 single-pass arcs
Up to 50+50=100 GeV

Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Dept. Of Energy

(efferson C

SLC

Thomas Jefferson National Accelerator Facility

Accelerator Physics Issues in NLC

- Two issues:
- Energy (rf technology)
- Luminosity (small spot and beam power)
- Small spot sizes:
- Low emittance damping rings
- Final focus system
- Alignment and jitter tolerances
- Beam-based alignment and feedback
 - •Both issues: (very high charge densities)
 - Damping ring instabilities
 - Beam collimation and machine protection

Thomas Jefferson National Accelerator Facility

• Beam power (long bunch trains):

- Charge from sources
- Long-range wakefields
- Radiation damage

Operated by the Southeastern Universities Research Association for the U.S. Dept. Of Energy

ellerson C

Luminosity: only few x 10⁴ larger than SLC!

- Increased beam power from long bunch trains
 - SLC: 120 Hz x 1 bunch @ 3.5x10¹⁰
 - NLC: 120 Hz x 190 bunches @ $0.75 \times 10^{10} \rightarrow 200 \times$
 - TESLA: 5 Hz x 2820 bunches @ 2.0x10¹⁰ → 340x
 - · Control of long-range wakefields is essential to assure multi-bunch
- Larger beam cross-sectional densities: N / ($\sigma_x \sigma_y$)
 - SLC: $3.5 \times 10^{10} \times 1.6 \ \mu m \ge 0.7 \ \mu m (FFTB: 0.6 \times 10^{10} \ge 1.7 \ \mu m \ge 0.06 \ \mu m)$
 - NLC: $0.75 \times 10^{10} \times 250 \text{ nm } \times 3.0 \text{ nm} \rightarrow 330 \times \text{SLC}$
 - TESLA: $2.0 \times 10^{10} \times 550 \text{ nm} \times 5 \text{ nm} \rightarrow 230 \times \text{SLC}$
 - Factor of 5 from energy (adiabatic damping) and factor of 10 from stronger focusing (similar to Final Focus Test Beam) but higher energy
 - Factor of 15 ~ 30 from decrease in beam emittance!

Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Dept. Of Energy

'efferson C

Competing Projects of the Next LC

Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Dept. Of Energy

'efferson C

Layout of **TESLA**

From TESLA Technical Design Report

Thomas Jefferson National Accelerator Facility

jjo/SC-ICFA Nanobeam '02-Sept 2-6, 2002, 12

Operated by the Southeastern Universities Research Association for the U.S. Dept. Of Energy

'all

Jefferson S

From TESLA Technical Design Report

jjo/SC-ICFA Nanobeam '02-Sept 2-6, 2002, 13

Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Dept. Of Energy

Jefferson G

JLC/NLC

JLC artist's impression

Jefferson Lab

Thomas Jefferson National Accelerator Facility

High Quality Beams, Why?

What we really want is Particle-Particle Collision

Not a Beam-Beam Collision

100 times smaller area

100 times more

Particle-particle collision

100 year experiment

 \rightarrow 1 year experiment

Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Dept. Of Energy

(efferson C

History of Beam Size in e⁺e⁻ Colliders

Creating High Quality Beams

•Electrons loose energy

by synchrotron radiation

•Beam becomes small

in this process

•World smallest beam

obtained at KEK-ATF

(Accelerator Test Facility)

Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Dept. Of Energy

efferson C

Synchrotron Radiation

Synchrotron radiation works as friction

Get a high quality beam in less than a second

Lowest Emittance Achieved

Accelerator Test Facility for JLC

(almost what we need for next LC)

Thomas Jefferson National Accelerator Facility

jo/SC-ICFA Nanobeam '02-Sept 2-6, 2002, 2

Operated by the Southeastern Universities Research Association for the U.S. Dept. Of Energy

Jefferson Pat

KEK-ATF Damping Ring

Thomas Jefferson National Accelerator Facility

Deleterious Processes

Acceleration of High Quality Beams

Thomas Jefferson National Accelerator Facility

Inner surface accurate to $1\mu m$

Must be aligned straight within 10µm

jjo/SC-ICFA Nanobeam '02-Sept 2-6, 2002, 24

Guiding the Beam

•Use magnet: Well-known technology since many, many years ago

•But

efferson C

- •10nm vibration can cause miss-collision
- •500nm shift can make the beam fat
- •Ground is moving
- \rightarrow Computer control of magnet position

Thomas Jefferson National Accelerator Facility

Ground Motion

Collide Tiny Beams

Beam size at collision point

100 μm long
0.3 μm wide
0.003 μm (3 nm) thick

(These are RMS values)

How can you keep them colliding ?

Thomas Jefferson National Accelerator Facility

ijo/SC-ICFA Nanobeam '02-Sept 2-6, 2002, 27

Operated by the Southeastern Universities Research Association for the U.S. Dept. Of Energy

efferson G

Beam-Beam Simulation

Operated by the Southeastern Universities Research Association for the U.S. Dept. Of Energy

15:45:39(13-MAY-02) CAIN2.32

Operated by the Southeastern Universities Research Association for the U.S. Dept. Of Energy

Feedback System

Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Dept. Of Energy

(efferson S

How do you know it's really small?

How can we measure the size of a beam which is running at speed of light ?

Interference of 2 laser waves

Can create a pattern like

jjo/SC-ICFA Nanobeam '02-Sept 2-6, 2002, 33

How do you know it's really small?

How can we measure the size of a beam which is running at speed of light ?

Interference of 2 laser waves

Can create a pattern like

Thomas Jefferson National Accelerator Facility

jjo/SC-ICFA Nanobeam '02-Sept 2-6, 2002, 3-

Monitoring Scheme

When an electron beam comes to the node,

- •If the beam is very thin,
 - almost no interaction with laser.
- •But if the beam is fat,
 - many high energy photons come out.

 $e + \gamma$ (laser) $\rightarrow e + \gamma$ (high energy)

(Compton scattering)

Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Dept. Of Energy

efferson C

FFTB Nanometer Monitor

Other Monitoring Schemes

Using a shorter-wavelength laser, we can measure down to 10nm but not less

How can we measure 1nm?

- •Many low-energy debris (electron and positron) are created during collision
- •They are annoying for experiments
- •But are useful for measuring the beam size

 \Rightarrow Where to we go from here??

\Rightarrow Need further simplification to reduce complexity.

Thomas Jefferson National Accelerator Facility

Emptiness and Form

Fluctuating concepts give "emptiness" form.

Thomas Jefferson National Accelerator Facility

jjo/SC-ICFA Nanobeam '02-Sept 2-6, 2002, 3

Further contemplation yields complex design and form

Thomas Jefferson National Accelerator Facility

Slowly, "simplicity" emerges as patterns and symmetries

Challenges

- Technical
 - Simplify design further e.g. TESLA damping rings
 - Reduce cost: do we need damping rings?
 ⇒R&D on sources
- Socio-economic and Political:
 - Reduce ambition: energy and luminosity
 - If ~\$1B one country can host
 - If ~several B\$ international collaboration with several countries
 - Learn how to collaborate globally

Thomas Jefferson National Accelerator Facility

o/SC-ICFA Nanobeam '02-Sept 2-6, 2002, 4

Operated by the Southeastern Universities Research Association for the U.S. Dept. Of Energy

lefferson Pab