

ICFA Nanobeams 02– Workshop Sessions 3

NLC Ground Motion Characterization Program At SLAC

ICFA Nanobeams 02– Workshop Sessions 3

Topics Presented

Introduction

- What, Why, Where, and How
- Sites vibration Characterization
 - At Site –127 CA
 - At Site –135 CA
- Characterization of Vibration sources (Site -135 CA)
- Ground vibration characterization program at SLAC
 - Field vibration measurement at SLAC
 - Planned field vibration measurement in parallel tunnel
- Conclusions

Next Linear Collider – U.S. Collaboration SLAC – FNAL – LBNL - LLNL ICFA Nanobeams 02– Workshop Sessions 3 What 560 m Pre-Linac 6 GeV (X) Compressor Task is to design, build and operate

- Compressor Damping Electron ~10 m 136 MeV (L) Ring Injector (UHF) Electron Main Linac 240-490 GeV (X) 2 GeV (S 170 m 9.9 km Final Focus Dump **RF** Systems 300 m 11.424 GHz (X) Low E Detector (S) 2.856 GHz HIE ~5 km Detector (L) 1.428 GHz (UHF) 0.714 GHz Dump Final Focus 9.9 kn e+ 510 m 6 GeV (S) 200 m 2 GeV Pre-Damping Positron Main Linac Ring (UHF) 240-490 GeV (X) Damping Positron Ring 10 m Injector 136 MeV (L) (UHF Compressor Pre-Linac 560 m 6 GeV (S) Compressor ~20 m 100 m 0.6 GeV (X)
 - a facility (NLC) with a footprint of About 30 km long and one km wide Including several buildings, each size a football field.
 - General layout
 - Injectors produce electron and positron beams
 - Linac accelerates the beams to 500GeV energy
 - Final focus focuses beams to a tiny spot in a collision point
 - Detector detects products of collisions and determine their properties

3 of 35 - Asiri

NLC

- NLC will collide beams (swarm) of electrons and positrons
- To increase probability of direct collisions of e⁺e⁻, beam sizes must be very small
- NLC beam sizes just before collision; 200 * 2 * 100000 nanometers

- **Ground Motion** and imported vibrations continuously $m_{isa}l_{ign}$ components of a collider and can result in
 - Off-set at IP
 - Emittance growth

ICFA Nanobeams 02– Workshop Sessions 3

• <u>Goal:</u>

To achieve stability of within a few nanometer above a few Hertz at the most critical region (Interaction Point).

• Perspective:

Figure below, shows range of natural and man-made vibration.

DISPLACEMENT AMPLITUDE

ICFA Nanobeams 02– Workshop Sessions 3

<u>Purpose of</u> Ground Motion characterization is to estimate

vibration (e.g. frequency content, amplitude) caused by far-field and near-field sources at the Technical Foundation; denotes where sensitive equipment is mounted.

Near-field sources, Associated with compressors, HVAC equipment, pumps, fans, etc.

Far-field sources, Ground motion due to natural and cultural sources, site specifics

- Excitation of Technical foundation is influenced primarily by transmission properties of the soil.
- Because of the inhomogeneity and discontinuity of the soil an estimate its transmission mechanisms are very complicated.
- By means of in-situ measurements and 3-D soil dynamic modeling, the reliability of such estimate can be greatly improved.

ICFA Nanobeams 02– Workshop Sessions 3

Approach at pre-concept level

SLAC - FNAL - LBNL - LLNL

ICFA Nanobeams 02– Workshop Sessions 3

Sutter Buttes Site 135-E -Site 127 Woodland Sacramento-Lake Berryessa **UC** Davis

Northern California Representative Sites

ICFA Nanobeams 02– Workshop Sessions 3

Picture showing Sites Sandstone formation near the measuring spot at CA-127 site

Probes were placed on the concrete bed at the measuring spot, then they were covered with a shielding enclosure.

ICFA Nanobeams 02– Workshop Sessions 3

Map showing location of ground vibration measurements at Site-135-E in CA

ICFA Nanobeams 02– Workshop Sessions 3

View to the south along the future alignment of Site-135-E, taken at the end of Bagley road View to the north along the future alignment of Site-135-E, taken at the end of Bagley road

SLAC - FNAL - LBNL - LLNL

Power displacement spectrum measured at the west spot at site -135-E , as compared with data from site-127

ICFA Nanobeams 02– Workshop Sessions 3

- The noise level measured on surface is quite low
- No significant cultural noise was found
- However, if we are not care-full will be our own worst enemy
- We are the major importer of vibration and Noise

Displacement spectrum measured at the west spot at site $-135\text{-}\mathrm{E}$, as compared with data from site-127

SLAC - FNAL - LBNL - LLNL

ICFA Nanobeams 02– Workshop Sessions 3

ICFA Nanobeams 02– Workshop Sessions 3

16 of 35 - Asiri

SLAC - FNAL - LBNL - LLNL

ICFA Nanobeams 02– Workshop Sessions 3

AREA:	Mechanical equipment pad				
Typical RF sector Main Linac		ID NAME: ENLIMEP-1 TO 13 Model: 500Gev, 120 Hz, NLC 2001			
Equipment name/description	Quantity	Individual equipment weight LBS	Total equipment weight LBS	Rotating speed	Rotating Part
Equipment in Mechanical equipment pad Beam Related systems					
LOW KLYSTRON GALLERY PUMP	1	2608	2608	3600	Pump impeller and motor
LOW BEAM HOUSING PUMP 1	1	1452	1452	3600	Pump Impeller and motor
COOLING TOWER FAN ²	2	740	1460	1800	Blades and motor
COOLING TOWER PUMPS	2	1560	3120	1800	Pump impoller and motor
Non-Beam Related systems					
CHILLED WATER PUMP	1	6.58	658	3500	Pump impeller and motor
CHILLERS (WATER COOLED)	,	4352	4352	1800	Compressor
Sub-total			13,670		
Equipment in klystron gallery area					
DRAIN SUMP PUMP	3	422	1266	1800	Pump Impeller and motor
VENTILATING FANS(USINg Shafts) 3	2	1705	3410	1014	Fan bladies and motor
AIR HANDLER UNIT (Racks Alcove)4	2	240	460	1080	Fan bladies and motor
AIR HANDLER UNITS (Kly Gallery)*	2	280	:560	1080	Fan blades and motor
Sub-total			5,716		
Total pieces of equipment	17		19,386		

ICFA Nanobeams 02– Workshop Sessions 3

- -The chiller rotating equipment rotating speed is 3600 RPM (60Hz).
- -The chiller equipment weighs 21,400 pounds.

-If a limit of 0.1 g is met at rotating equipment, the inertia force on skid is about 2,140 lb.

-The chiller equipment mounted on a spring isolated skid.

Generally, they have a natural frequency in the range of 4 Hz to 6 Hz which corresponds to; a reduction factor of about 1%.

Thus, one percent of this force is transmitted to chiller equipment foundation.

Vibration Isolation (Transmissibility)

The magnitude of the force transmitted to the ground ; $\hat{F}_g = c\dot{x} + kx$

The transmissibility T, is defined as

$$T = \frac{\hat{F}_g}{\hat{F}} = \left[\frac{1+4\zeta^2\eta^2}{(1-\eta^2)^2+4\zeta^2\eta^2}\right]^{1/2}$$

Transmissibility of an isolator as a function of frequency ratio

Figure 3-16. Distribution of displacement waves from a circular footing on a homogeneous, isotropic, elastic half-space (from Woods, 1968).

Figure E.3: Typical velocities of compression waves (P-waves) for rocks and soils

 χ_c

where τ_{e} = the cyclic stress amplitude corresponding to the strain amplitude γ_{e}

Dynamic Shear Modulus : G

ICFA Nanobeams 02– Workshop Sessions 3

SLAC – FNAL – LBNL - LLNL

ICFA Nanobeams 02– Workshop Sessions 3

Goal; In collaboration with Nick Simos of BNL

• to utilize an integrated procedure used for 3-D modeling and dynamic soil analysis of Fault-Soil-Structure interaction.

• to generate ground motion and spatial distribution of soil properties using spectral representation based procedure.

• to assess the response of technical foundation from near and far field sources.

ICFA Nanobeams 02– Workshop Sessions 3

Field Vibration Measurement Program

• Experts say the 3-D modeling and analysis is :

fancy, expensive and complex

- However, if benchmarked with reliable filed measurements it will be a great tool to assess vibration response due to source changes in ; planning, design and construction phase
- NLC Site Investigation plan for FY03 is:
 - To prepare an accurate and consistent cost comparison of all NLC representative sites (3-IL, 2-CA)
 - To identify the cost "delta" for cut-and-cover vs. tunneling construction methods for 2-CA sites (CA-135 vs. CA-127)
- Trade-Off; Tunnel Provides a More Stable and or Quiet Environment over the cut-and-cover (Insufficient data available to compare)
- Trade-Study; Perform Vibration Measurement in a Parallel Tunnel as well as for cut-and-cover

ICFA Nanobeams 02– Workshop Sessions 3

Field Vibration Measurement at SLAC

- Selected Sector 9 and 10 along the SLAC accelerator housing for the field measurement
 - Geological conditions at Sector 9 &10:
 Eocene sandstone and claystone (shear velocity of 720 m/sec)
 - Geological conditions at CA-135 site:
 Site Formation, sandstone with claystone (shear velocity > 760 m/sec)
- Retained services of a firm expert in field of vibration measurements.

Colin Gordon and Associates of San Bruno, CA

- Performed Field ground measurement at Sect. 9 at SLAC on 7Aug. 02.
- Received the first draft of vibration measurement report on 27 Aug. 02.
 - Following slides are an overview of the report.

ICFA Nanobeams 02– Workshop Sessions 3

Planned Vibration Measurement Program

- Perform vibration measurement in cut-and-cover and parallel tunnel constructed with a similar configuration and in a similar geological formation as proposed for CA-135 and CA-127 sites, respectively
- To obtain relevant data associated with:
 - Transmission of vibration from the surface to the tunnel floor for cut and cover and parallel tunnel construction
 - Vibration transmission from a parallel tunnel at the same depth to the adjacent tunnel as well as along the tunnel
 - Establish the Transfer Function (Frequency Response Function or FRF) between the "source" and the "receiver" for each case
 - Use the data for benchmarking of 3-D soil dynamic modeling program

SLAC - FNAL - LBNL - LLNL

Plan Layout of Sector 9 and 10 at SLAC

SLAC – FNAL – LBNL - LLNL

1000 **At Drive Point S1** 50 Vertical (re 1μin/s) 100 -N-S 40 E-W 30 RMS Velocity,μin/s æ 10 20 eve, 10 **RMS Velocity** 0.1 -20 -30 0.01 -40 0 10 20 30 40 50 60 70 80 90 100 Frequency, Hz 1000 60 **At Tunnel Receiver Location R1** 50 Vertical 100 N-S RMS Velocity, µin/s E-W 10 Marthank P 0.1 -30 0.01 -40 0 10 20 30 40 50 60 70 80 90 100 Frequency, Hz

Ambient Vibrations at Drive Point S1 and Receiver Location R1 Taken on 7August 2002

SLAC - FNAL - LBNL - LLNL

ICFA Nanobeams 02– Workshop Sessions 3

Figure 5: Ground Transmission - SLAC Cut-and-Cover Tunnel - 7 Aug 2002 Drive-Point Mobility at S1 Figure 6: Ground Transmission - SLAC Cut-and-Cover Tunnel - 7 Aug 2002 Transfer Mobility - Response at R1 due to Hammer Force at S1

28 of 35 - Asiri

SLAC - FNAL - LBNL - LLNL

ICFA Nanobeams 02– Workshop Sessions 3

Change in Amplitude

	Source	Receiver	Distance A	Attenuation at Given Frequency				
			Distance, it	10 Hz	20 Hz	30 Hz	60 Hz	
	S1	R1	130	0.014	0.0084	0.012	0.005	
		R2	134	0.012	0.012	0.014	0.004	
		R3	162	0.011	0.0084	0.006	0.001	
		R4	233	0.010	0.004	0.002	0.001	
		R5	289	0.005	0.002	0.009	0.0003	
	S2 -	R1	248	0.023	0.011	0.007	0.006	
		R2	271	0.027	0.011	0.007	0.006	

The figures in the above table represent the attenuation

Factor A for a vibration with its source near Sn propagating along the same path.

Example 1: Suppose a pump is installed at S1, and it produces a vibration at 30 Hz with an amplitude of X.

The amplitude at 30 Hz that we measure at R5 would be the greater of either ambient or 0.009X.

Example2: If we want to place a pump at S1 and not to exceed ambient at R5 (06Mic in/sec), then we need to impose a limit on the resulting vibration at S1 of 0.6/0.009=67 Mic in /sec.

Log Mean Transmission From Drive Point S!

ICFA Nanobeams 02– Workshop Sessions 3

Proposed Field Vibration Measurement in a Parallel Tunnel

- Surface-to-depth measurement will be obtained using:
 - Traffic-as-source: It will measure the surface ambient and the tunnel simultaneously, using the excitation at surface (traffic,etc)
 - Data will be taken simultaneously over relatively long periods
 - Impulsive-source: Measurement will use the same instrument setup, using a controlled source, such as instrumented hammer
 - A "FRF" will be obtained, showing attenuation provided by ground (part of FRF is "coherence" measurement)
 - Rail-as-source: Same discussion as "Traffic-as- source", except the source and receiver would be reversed in the computations
 - Rationale: Small amount of traffic, not enough to get a signal with adequate coherence may be the case in the middle of the night (provides a check of the validity of measurement)

ICFA Nanobeams 02– Workshop Sessions 3

Proposed Field Vibration Measurement in a Parallel Tunnel

- Tunnel-to-tunnel measurement will be obtained using:
 - Electro-magnetic shaker: It will generate steady-state vibration for frequency range from 2 Hz to 100Hz (frequency sweep) in "source" tunnel with sensors placed near and along the tunnel as well as in the adjacent tunnel
 - Impulsive-source: Measurement will use the same instrument setup, using a controlled source, such as instrumented hammer
 - Shaker and hammer will simulate broad range of vibration sources in the NLC service tunnel, such as activities, ventilation equipment, cooling water, modulator, pumps, etc
 - A transfer function (FRF) will be obtained, showing attenuation or amplification of vibration between the tunnels

METRO RED LINE PROJECT

<u>A cross-section through the Santa Monica mountains showing the different geological conditions.</u> <u>Reach 6 might be a potential test site.</u>

ICFA Nanobeams 02– Workshop Sessions 3

Geological Information

- Geologic conditions at Reach 6
 - Upper Topanga Formation; Sandstone and shale has a shear wave velocity of between 3,000 and 4,000 ft/sec
 - Further south, sandstone with conglomerate imbedded shear wave velocity of between 4,800 and 7,800 ft/sec
- Geologic conditions at CA-127 site
 - Sites Formation; Sandstone with intervals of interbedded claystone and siltstone (shear wave velocity > 2500 ft/sec)

<u>CA-127 proposed tunnel is</u> <u>similar in configuration</u>

<u>the MTA Tunnel</u>

ICFA Nanobeams 02– Workshop Sessions 3

Typical Cross-Section of the MTA Tunnels

Conventional Facilities – Working Sessions Fall 2001

Conclusions

- Ground vibration characterization program is well underway at SLAC
 - Representative sites with good geological conditions for cut-andcover and tunnel construction have been identified.
 - The noise level measured on surface at both sites (CA-135 and CA-127) are very low and no significant cultural noise was found.
 - Near-field vibration sources for cut-and-cover are characterized.
 - Field vibration measurement at SLAC is competed.
 - Field vibration measurement in a parallel tunnel will start, soon.
 - Initial work on 3-D modeling just started.