Tuning and orbit feedback in Storage Ring Light Sources

Susan Smith ASTeC, Daresbury Laboratory, UK

Nanobeams02

Content

- Tuning
 - » Quality factors
 - » My idea of tuning
- Orbit control and feedback
 - » Local correction
 - » Global correction
 - » Fast global correction

Quality factors

- Beam current
 - » Single bunch and multibunch instabilities
 - » Ion effects
 - » Beam heating
 - » Stability
- Lifetime
 - » Vacuum
 - » Aperture
 - » Dynamic aperture
 - » Momentum aperture
- Vertical and horizontal beamsizes and divergence (emittance and coupling)
 - » Instabilities
 - » Magnet errors
 - » Orbit errors
- Injection rate
 - » Nonlinear dynamics

Susan L Smith

Tuning

- Strive to set the machine to the model (which has random errors etc.)
 - » Set tunes and desired chromaticity etc.
 - » Correct the orbit, dispersion and coupling
- Refinement and correction of machine or model
 - » Beam based alignment
 - "Experimental calibration" e.g. LOCO, Linear Optics from
 Closed Orbits (:- response matrix measurement and fitting of model)
- Measure and understand the nonlinear dynamics particular important because of the large momentum aperture required for Touschek lifetime

Nonlinear measurement/optimisation

- Tracking
 - » Turn by turn tracking using fast BPMs and digital storage
 - Tuneshift with amplitude
 - "Phase space"
 - Measured frequency maps
- Dynamic aperture measurements
 - » Lifetime and injection studies
 - » Kick experiments
- Momentum aperture
 - » Lifetime measurements
- Tuneshifts with momentum

SSRC T.S. Ueng PAC'01

Susan L Smith

Dynamic aperture measurements

Photon Factory EPAC'00 Y.Kobayashi and K. Haga

Susan L Smith

Tuneshift with momentum

Change RF frequency and follow off energy orbit

Figure 6: Measured and predicted (dashed) tune paths

- •Thin sextupoles an issue
- •Checked multipole contribution
- •Fitted sextupole strengths to data
 - Predicted

Measured

PAC 2001 A. Ropert, L. Farvacque,

ASTeC, Daresbury Laboratory Nanobeams02 Workshop September 2002

Susan L Smith

Frequency map

Frequency maps for ALS with a calibrated lattice (I.e. adjusted to match measured response matrix, LOCO)

Un-allowed resonances appear.

ALS EPAC'00 C. Steier, D. Robin

Susan L Smith

Orbit Feedback In SR Sources

Susan L Smith

Orbit Feedback In SR Sources

- Low emittance <10nmrad and small coupling <1%
- Users require stability to 5-10% in position and angle
- Vertical stability of ~1 micron for high performance
 3rd generation machines
- Stability period msec to hours
- Electron jitter increase the effective beam sizes and degrades the brightness of the photon beam
- Slow orbit drifts leads to frequent realignment of the optics

Local Steering

3 or 4 magnet bump, using 1 or two position monitors can be either electron or photon monitors

0.4

0.3

Susan L Smith

Global Steering

- Single corrector results in an oscillating change at the correctors
- Orbit shift <u>O</u> from steering magnets $= \underline{R} \times \underline{M}$ in matrix form
- Global correction the matrix <u>R</u> is "inverted" to find the correctors for any desired orbit changed.
- Non square matrix, poorly positioned correctors or magnets, errors in matrix measurements means that this is often ill conditioned..
- Singular value decomposition (SVD) <u>R</u>=<u>UWV^T</u> is now a popular and robust method to exclude singular values...
 - » More monitors than correctors minimises monitor errors.
 - » More correctors than monitors minimises the corrector strengths used.
 - » Also used is MICADO and Harmonic correction.

Susan L Smith

Fast global correction

V Schlott EPAC 2002

Super-ACO Fast Digital Feedback System

L.Cassinari PAC 99

Susan L Smith

APS

Susan L Smith

ASTeC, Daresbury Laboratory rkshop September 2002

Nanobeams02 Workshop

NSLS

Susan L Smith

ASTeC, Daresbury Laboratory orkshop September 2002

Nanobeams02 Workshop

Some Issues

- eBPM movements
 - » Decouple eBPM vacuum chambers
 - » SVD filtering of non-beam movements
 - » Measure the motion and compensate
- pBPMs Dipole contamination of undulator radiation
 - » Move the orbit (APS)
 - » Energy sensitive photon monitors (ELETTRA)
- eBPM Intensity/Fill pattern dependence
- BPM and Steering magnet resolution

BPM Sampling Frequency

Susan L Smith

Position Feedback Worldwide

SR facility	FB type	Monitors	max. BW	Stability
ALS*	G	rf-BPMs	<100 Hz	< 1 µm
APS	G and L	rf & p-BPMs	< 30 Hz	$< 2 \ \mu m$
			< 50 Hz *	< 1 µm *
NSLS	G	rf-BPMs	<200 Hz	0.5 µm
SPEAR 3*	G	rf-BPMs	<200 Hz	< 1 µm
BESSY *	L	rf and p-BPMs	<100 Hz	< 1 µm
DELTA	G	rf-BPMs	<1 Hz	$< 5 \ \mu m$
ELETTRA *	L	rf-BPMs	<20 Hz	$< 0.2 \ \mu m$
ESRF	G	rf-BPMs	100 Hz	0.6 µm
MAX-lab	G	rf-BPMs	1 Hz	$< 3 \ \mu m$
SLS *	G	rf & p-BPMs	100 Hz	$< 0.5 \ \mu m$
SRS	K G	p-BPMs	0.03 Hz	1 µm
SUPER-ACO	G	Rf-BPMs	<150 Hz	$< 5 \ \mu m$
DIAMOND *	G	rf-BPMs	100 Hz	< 1 µm
SOLEIL *	G	rf and p-BPMs	100 Hz	0.2 µm
KEK-PF	G	rf-BPMs	3 Hz	$< 5 \ \mu m$
SPRING-8	G	rf-BPMs	< 0.01 Hz	$< 3 \ \mu m$
			200 Hz *	< 1 µm *

Table 1: Position feedbacks in SR sources worldwide

V Schlott EPAC 2002

Susan L Smith