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Abstract

To correct the β? at the main collision points (IP1 and
IP5) simultaneously for the two counterrotating proton
beams in the LHC a set of specific quadrupoles in the non-
common part of the machine is used. Due to the antisymet-
ric optics, several quadrupoles on each side of the insertion
have to be used. The change in the value of β? is accom-
plished by changing the k values of the quadrupoles. This
set of increments is referred to as β? tuning knob. The in-
crements were calculated by rematching β? in a range of
± 20 % about the nominal value. Linear curves were fitted
to the variation of increments to construct a linear tuning
knob. This was done for each plane using MAD 8. The
linear behaviour and the orthogonality of the knobs were
investigated. Different field errors were introduced in the
lattice and the correction efficiency of the knobs were stud-
ied.

1 INTRODUCTION

In operation during collision the beam sizes of the two
beams have to be corrected. To do so, there have to be
two orthogonal knobs to correct each plane independently.
For these knobs a set of quadrupoles, which are located on
each side of the IP in the insertion, are available. From
these quadrupoles a knob is constructed so that a specific
∆K is assigned to each, which I refer to as knob vector,
so that the β? is changed. To scale the β? the knob vector
is multiplied with a variable K which is the actual knob.
The knobs should have the following characteristics within
a variation of ±20% : be orthogonal in the x- and y- plane,
create no betabeating in the rest of the ring, the scaling of
the β? with respect to the variable K be linear, no change
of other constraints, be able to correct the β? independently
of the source of the error and be simple for operation.

The performance of the knobs have then to be tested.
Therefore, both knobs, when varied over their nominal
range, must meet the conditions of the different criteria de-
scribed above. If this is the case the second stage of testing
ist started. Various errors are introduced in the lattice and
the knobs are used to correct them. This is done step by
step to see to which types of errors the knobs can be ap-
plied.

2 CALCULATING β? TUNING KNOBS

The design of the LHC insertion is asymmetric (see fig.
1) and the beams pass through the inner tripplet (Q1-Q3 left
and right from the IP) in a common beam pipe offcenter of

the magnetic field axis. Therefore the magnets of the inner
tripplet cannot be used to adjust the β?.
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Figure 1: β-functions at IR1 between Q7 left and right from
IP1.

The closest magnet that can be used is Q4 left and right of
the IP. There are further three quadrupoles (Q5-Q7) which
can be used without any restriction. Because of the asym-
metric β-functions, the different phase advance and the
need to correct both planes, there is no pair of quadrupoless
that can do the correction for either of the planes without
changing the other plane’s β-function. The position of the
different tuning quadrupoles and the dipoles seperating and
combining the two beams are shown in fig.2.
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Figure 2: Position of the different magnets in IR1 and parts
of the dispersion suppressor.

With the chosen qadrupoles the knob vector is calculated
using MAD8. The version of the lattice file for the LHC is
collision optics V6.2.

The first knob vector was constructed using Q4 to Q7 left
and right from IP1. As constraints where chosen β?, α? and
two β-functions values at two points in the ring outside the
insertion which are seperated by a phase advance of φ = π

4 .
This was done for both planes. The β?-value of one plane
is set to the nominal value, for the LHC at collision equal
to 0.5 meters, so as to create no change of the β-function



in this plane, while the other is varied to create the desired
change. The β? is matched in small steps and the resulting
∆K of the tuning quadrupoles are shown in fig.3 as a func-
tion of β? . Both α? values are set to their nominal values to
keep the beam waist of both planes at the IP. To suppress a
β beating (change of the β-function around the whole ring)
is the aim of the last four constraints. Fitting linear curves
to the plot shown in fig.3 yielded a knob vector which only
worked for a spesific value of ∆K and a narrow region ar-
round it. With greater distance to this value, the constraints
changed. The variation of the fitted curves only moved the
optimized ∆K value without improofing the knob vector
as a whole. Different new knob vectors with different sets
of constraints and variation of the fitted curves were calcu-
lated, but all gave the same result.
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Figure 3: The change of the tuning quadrupoles as a func-
tion of β?, ∆K = f(β?

x)[m−2], which are obtained by
match. The chosen constraints are β?

x, β?
y , α?

x, α?
y at IP1

and βx, βy at the quadrupole slices MQY.A4R8.B1..1 and
MQY.A4L8.B1..2, which have a phase advance of ∆φ ≈
π
2 .

Because of this, the lattice was analyzed to extend the
number of tuning quadrupoles on both sides of the IP. There
are further two quadrupoles on each side (Q8 and Q9)
which are part of the dispersion suppressor. To use these
means to create additional dispersion at the IP beside the
one introduced by the crossing angle. By changing K of
Q13 with the same relative change as Q9 the introduced
dispersion can be reduced. This additional dispersion must
not be greater than the one from the crossing angle and the
one created by the error to be corrected. The additional dis-
persion, if too big, increases the beam size. For the LHC
the nominal beam size at collision is 14µm. With the nom-
inal energie spread δe = 1.10 · 10−4 the dispersion must
be smaller than D ≤ 1 · 10−2[m] according to the relation
σ =

√

(β · ε) + (D · δe)2. The relation between β and
∆K for the tuning quadrupoles are plotted in Fig.4.
In first approximation the curves are linear. The tuning
knob vectors created with linear fits show for a variation of
β? by (+100/− 25)% a much improved better behaviour.
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Figure 4: The change of the tuning quadrupoles as a func-
tion of β?, ∆K = f(β?

x)[m−2], which are obtained by
match. The chosen constraints are β?

x, β?
y , α?

x, α?
y at IP1

and βx, βy at the quadrupole slices MQY.A4R8.B1..1 and
MQY.A4L8.B1..2, which have a phaseadvance of ∆φ ≈
π
2 .

After all the usable intervall of ±20% is much smaller and
therefore enough safety margin remains. As one can see
in fig. 4 four tuning quadrupoles change more than the
other eight which seem to fluctuate around the zerro line.
We tried to only use these four for matching, but it did not
lead to reasonable results. The machted β?

x value does only
change about (+0.02/−0.1)[m] although it should change
(+0.5/− 0.25)[m] . Additionally to this β?

y is changed by
≈ −20%. Even as the functions ∆K = f(β?

x) are lin-
ear, as shown in fig.5, a linear scaling implies a far to big
change of the constraints, which are to be keept constant.
Also a scaling of ∆K would exceed the limits of maximum
powering of the quadrupoles.

The variation of ∆β?
x, ∆β?

y , ∆α?
x, ∆α?

y, Qx, Qy, Dx, Dpx

as a function of ∆β?
x and ∆β?

y is documented in the plots
Fig.12, 5 - Fig.19, 6. In these cases the knobs were applied
simultaneously. The ranges of the x− and y− axes are
(−50/+ 100)%. The results for the variation of ±20% are
summarized in table1.

Table 1: Changes of ∆β?
x, ∆β?

y , ∆α?
x, ∆α?

y, Qx, Qy, Dx,
Dpx as a function of ∆β?

x and ∆β?
y for ±20% changes.

VAR
β?

x

β?
y

+20%

+20%

+20%

−20%

−20%

+20%

−20%

−20%

∆β?
x/[%] −0.72 0.69 0.41 −0.44

∆β?
y/[%] −0.47 0.44 0.38 −0.42

∆α?
x/[1] 0.023 0.019 0.017 0.023

∆α?
y/[1] −0.027 −0.013 −0.016 −0.029

∆Qx/[1] 0.0083 0.0046 −0.0069 −0.0098

∆Qy/[1] 0.0049 −0.0104 0.0071 −0.0052

∆D?
x/[m] 0.010 0.0069 −0.0060 −0.0084

∆Dp?
y/[1] −0.0073 −0.0040 0.0023 0.0031

The changes of ∆β?
x, ∆β?

y , ∆α?
x, ∆α?

y , ∆Qx and ∆Qy

are acceptable for ajustments in operations. The dispersion
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Figure 5: The changes of the tuning quadrupoles
KQ8.L1B1, KQ7.R1B1 - KQ9.R1B1 and KQ13.R1B1 as
a function of β?, ∆K = f(β?

x)[m−2], which are obtained
by match. The chosen constraints are β?

x, β?
y , α?

x, α?
y at

IP1 and βx, βy at the quadrupole slices MQY.A4R8.B1..1
and MQY.A4L8.B1..2, which have a phase advance of
∆φ ≈ π

2 . The values at the x-axis are the matching goals
which are failed by a factor ≈ 100.

reaches the threshold for a change of (+20/ + 20)%. This
has to be investigated closer.

The orthogonality behaviour(∆β?
x = f(β?

x, β?
x), ∆β?

y =
f(β?

x, β?
x)), as shown in plot 12, 5 and plot 13 5 of both

knobs is different. The reason for this is the asymetric lat-
tice as mentioned before. Due to other reasons, the lattice
is not strictly asymmetric. This can be seen in the values
for the β-functions which are shown in Table 2.

Table 2: Relation of the β-functions at IR1.

NAME βx βy
βx

βy

βy

βx

KQ13.L1B1 30.9987 175.199 5.65182
KQ9.L1B1 13.3884 163.777 12.2328
KQ8.L1B1 141.876 10.5264 13.4781
KQ7.L1B1 76.4196 167.610 2.19329
KQ6.L1B1 515.796 6.69436 77.0493
KQ5.L1B1 745.398 180.832 4.12205
KQ4.L1B1 1648.63 363.751 4.53230

IP1 0.50000 0.50000 1.0
KQ4.R1B1 363.751 1648.63 4.53230
KQ5.R1B1 180.832 745.398 4.12204
KQ6.R1B1 6.69436 515.796 77.0493
KQ7.R1B1 167.927 76.2554 2.20217
KQ8.R1B1 12.2194 133.042 10.8878
KQ9.R1B1 132.846 37.8208 3.51251

KQ13.R1B1 172.108 34.3219 5.01452

The first column shows the name of the tuning quadrupoles,
colums two and three the β-functions taken at the center of
the quadrupoles and colums four and five the ratios βx

βy
and

βy

βx
. Only values greater than one for the ratios are shown

to indicate which β exactly is greater than the other. Also
the phase advance is not antisymmetric arround the IP as
shown in Table 3.

Table 3: Phaseadvance ∆µ between the tuningquadrupoles
and IP1.

NAME ∆µx ∆µy

KQ9.L1B1 0.5370 1.0764
KQ8.L1B1 0.3661 0.8894
KQ7.L1B1 0.2996 0.7063
KQ6.L1B1 0.2708 0.4787
KQ5.L1B1 0.2623 0.2804
KQ4.L1B1 0.2584 0.2637
KQ4.R1B1 0.2637 0.2584
KQ5.R1B1 0.2804 0.2623
KQ6.R1B1 0.4787 0.2708
KQ7.R1B1 0.7063 0.2996
KQ8.R1B1 0.8654 0.3679
KQ9.R1B1 1.0778 0.4723

All this contributes to the different behaviour of the planes
because a change of the β-function at the IP is related to
these variables as follows:
∆β? = β?

2 sin(2πQ)

∮

β(s)∆K(s) cos(2|∆µ| − 2πQ)ds

In addition the dispersion ∆Dx and β functions have to
be observed arround the ring. A change in either of these
functions will cause a change of the parameters at other IP’s
which should be avoided. The β function in the x− plane
is shown in fig.6. There is no change except in the region of
IP1, due to the variation of the tuning quadrupoles around
IP1.
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Figure 6: Change of the β function in the x− plane
when the IP1 tuning knob for this plane is applied. The
changes occur only in the region between KQ13.L1B1 and
KQ13.R1B1.

A zoom of this region is shown in fig.7, 4. The betafunction
at IP1 is changed to the matched value. Fig.8 shows the
same situation for the y− plane. Here the β function only
changed in the region of the tuning quadrupoles to keep it



constant at the IP. This proves the orthogonal behaviour of
the knobs.
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Figure 7: Change of the β function between KQ13.L1B1
and KQ13.R1B1 in the x− plane when the tuning knob for
this plane is applied. In order to have the wanted change at
the IP the incomming β function creates this change. The
outgoing betafunction has to be changed to have no β beat-
ing in the ring.
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Figure 8: Change of the β function between KQ13.L1B1
and KQ13.R1B1 in the y− plane when the tuning knob
for the other plane is applied. This shows the orthogonal
behaviour of this knob.

For the dispersion the situation is simpler. As there is
only the x− plane to be observed there is no cross talk of
the planes. Fig.9 shows the dispersion function arround the
ring. There are changes of approx. 0.05[m] in most of
the ring with some exceptions with approx. 0.1[m]. The
biggest changes are in IR1 and IR5. Fig. 10 presents a
zoom of the IP1 region.

So far the results are acceptable. Further studies of dif-
ferent combinations of constraints will show if further im-
provement of the behavior can be obtained.

0

0.05

0.1

0.15

0.2

0.25

0.3

0 5000 10000 15000 20000 25000 30000

 ∆Dx

 (m)

s (m)

Absolute Change of the Dispersion Function in the LHC

Figure 9: Dispersion beat arround the ring created by ap-
plying the tuning knob for the x− plane. The biggest
changes of the dispersion are in IR1 and IR5.
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Figure 10: Zoom of figure 9 showing the region between
KQ13.L1B1 and KQ13.R1B1. The change of the disper-
sion at the IP is smaller than in the rest of the region.
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Figure 11: Zoom of figure 9 showing the region between
KQ13.L5B1 and KQ13.R5B1. The change of the disper-
sion at the IP is smaller than in the rest of the region.
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Figure 12: Orthogonality behaviour of the β?
x knob. ∆β?

y is
shown as a function of β?

x and β?
x (∆β?

y = f(β?
x, β?

x)). To
only see the change of β?

y created by the β?
x knob, ∆β?

y is

normalized as following: ∆β?
y =

β?
yist

−β?
ysoll

β?
ysoll

. β?
yist

is the

actual value and β?
ysoll

is the value if only the knob vector
for β?

y is applied. The ranges on the x− and y− axes are
(+100/− 50)%.
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Figure 13: Orthogonality behaviour of the β?
y knob. ∆β?

x is
shown as a function of β?

x and β?
x (∆β?

x = f(β?
x, β?

x)). To
only see the change of β?

x created by the β?
y knob, ∆β?

x is

normalized as following: ∆β?
x =

β?
xist

−β?
xsoll

β?
xsoll

. β?
xist

is the

actual value and β?
xsoll

is the value if only the knob vector
for β?

x is applied. The ranges on the x− and y− axes are
(+100/− 50)%.
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Figure 14: Influence of the knob vectors on the horizontal
α-function at IP1 α?

x = f(β?
x, β?

x). On the x− and y− axes
the values of the β-functions at IP1 for both planes, β?

x and
β?

y , are shown within a range of (+100/ − 50)%. On the
z− axis α?

x is shown.
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Figure 15: Influence of the knob vectors on the vertical α-
function at IP1 α?

y = f(β?
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x). On the x− and y− axes
the values of the β-functions at IP1 for both planes, β?

x and
β?

y , are shown within a range of (+100/ − 50)%. On the
z− axis α?

y is shown.
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Figure 16: Influence of the knob vectors on the horizontal
tune Qx = f(β?

x, β?
x). On the x− and y− axes the values

of the β-functions at IP1 for both planes, β?
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y , are
shown within a range of (+100/ − 50)%. On the z− axis
Qx is shown.
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Figure 17: Influence of the knob vectors on the vertical
tune Qy = f(β?

x, β?
x). On the x− and y− axes the values

of the β-functions at IP1 for both planes, β?
x and β?

y , are
shown within a range of (+100/ − 50)%. On the z− axis
Qy is shown.
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Figure 18: Influence of the knob vectors on the dispersion
Dx = f(β?

x, β?
x) at IP1.On the x− and y− axes the values

of the β-functions at IP1 for both planes, β?
x and β?

y , are
shown within a range of (+100/ − 50)%. On the z− axis
Dx is shown.
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Figure 19: Influence of the knob vectors on the change of
the dispersion Dpx = f(β?
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3 TESTS
To test the behaviour of the knobs errors are introduced

into the lattice. A preliminary correction is applied, e.g., or-
bit correction for B1 field errors, and B3, B4, B5, A2, A3
correction, based on magnetic field measuremets. Than the
tuning knobs were applied and their effect was observed.
To obtain a diversified result demonstrating for which type
of error the knobs work a test program as shown in Fig.20
is followed.

(MQX)
Inner Triplet 
Quadrupole

Arc Dipole

(MB)
Arc Quadrupole

(MQ)

normal skew

Dipole error
Quadrupole and 

higher order 
error

SystematicRandom

Figure 20: Description of the testprogram.

So far errors where introduced in arc dipoles MB and arc
quadrupoles MQ. As error field types B1 to B11 have been
applied. For all different cases the β? values at IP1 could
be corrected. A summary of the results for the case, when
errors in all the magnets with all field error types were in-
troduced in the lattice described above, is shown in Table
4.

Table 4: Results from the test run with systematic and ran-
dom errors of the field type B1 to B11 in the arc dipoles
MB and arc quadrupoles MQ.

mean value rms min max
∆βx 2.1E-02 1.5E-02 -1.1E-03 -6.9E-02
∆βy 2.3E-02 1.8E-02 1.2E-03 8.6E-02
∆Dx 1.4E-02 5.1E-02 -1.5E-04 -3.9E-01
∆Dpx 4.0E-02 1.9E-01 3.8E-04 -1.5E+00
∆Qx 7.2E-02 4.6E-02 -3.2E-03 1.8E-01
∆Qy 5.6E-02 3.5E-02 3.0E-04 -1.3E-01

tk appl tk appl
∆βx 5.0E-01 5.0E-01
∆βy 5.0E-01 5.0E-01
∆Dx 1.5E-03 -1.6E-02
∆Dpx -8.9E-03 -3.2E-02
∆Qx 64.313 64.312
∆Qy 59.322 59.317

Columns two and three show the mean value and rms of the

changes between the introduction of the errors and the ap-
plication of the tuning knobs, column four the minimum,
column five the maximum change out of sixty different
seeds and columns six and seven the resulting final val-
ues of βx, βy, Dx, Dy, Qx, Qy for the same seed as for the
maximum and minimal change after the tuning knobs were
applied.

4 CONCLUSION
So far the characteristics of the calculated tuning knobs

are within the given boundaries. Normal field error types in
the arc dipoles and quadrupoles can be corrected with these
knobs. The change of the dispersion in IP1, when applying
the tuning knobs, has to be followed up. The skew field
errors and errors in the inner triplet quadrupoles have to be
tested to determine the applicability of the knobs for these
cases. The action of the knobs in presence of a closed or-
bit distortion will also be investigated. Finally beam beam
effects and the reaction of the knobs to these will comple-
ment the picture of the behaviour of the knobs.

The results show, that even in complicated designs as for
the LHC tuning procedures can be developed. Following
a similar scheme as described above, IP β-function tuning
knobs could also be computed for linear colliders, such as
CLIC.

5 ACKNOWLEDGEMENT
I thank A. Verdier, M. Hayes and F. Zimmermann for

comments and informations.

6 REFERENCES
[1] H. Grote and F. C. Iselin, ‘The MAD program (methodical

accelerator design) version 8.4: User’s reference manual,”
CERN-SL-90-13-AP-REV.2.

[2] N.J. Walker, J. Irwin, M. Woodley, ‘GLOBAL TUNING
KNOBS FOR THE SLC FINAL FOCUS.” SLAC-PUB-
6207, Apr 1993. 3pp. Presented at 1993 Particle Accelerator
Conference (PAC 93), Washington, DC, 17-20 May 1993. In
*Washington 1993, Particle accelerator* 95-97.

[3] Y. Nosochkov, P. Raimondi, T.O. Raubenheimer, A. Seryi,
M. Woodley ‘TUNING KNOBS FOR THE NLC FI-
NAL FOCUS.” SLAC-PUB-9255, Jun 2002. 4pp. Pre-
sented at 8th European Particle Accelerator Conference
(EPAC 2002), Paris, France, 3-7 Jun 2002. e-Print Archive:
physics/0206068


