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Abstract 
Designing feedback loops for a circular particle 

accelerator low level RF can be based on a state variable 
representation. It includes the design of phase, radial 
feedback loops as well as synchronization loops between 
an injector and the main accelerator. A state space model 
linking the main variables typically used to describe a RF 
system is introduced before presenting the feedback 
design. 
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1. INTRODUCTION 
A state space description can be developed to model the 
evolution of the main variables used to describe the 
radiofrequency system of a circular particle accelerator. 
That description leads to the design of a feedback system 
based on a pole placement approach, providing greater 
stability and smaller errors. 
 

2. DESCRIPTION OF THE LOOPS 
 

2.1 Main variables and transfer functions 
The main variables use to describe the system are [1]: 
ϕ the instantaneous phase deviation of the bunch from the 
synchronous phase. 
δR the variations of the beam radius 
ωrf the RF frequency 
δωb the variations of the beam frequency 
ϕb the phase of the beam with respect to the RF 
 
These variables are linked through the following transfer 
functions: 
 

 

22

22

22

)(

)(

)(

srf

b

srf
R

srf

s

s
sB

s

bR
sB

s

s
sB

ωδω
δω

ωδω

ωδω
ϕ

ω

ϕ

+
==

+
==

+
==

 

where b is a scaling factor and ωs the synchronous 
frequency. 
Figure  shows the model of the system. K0 denotes the 
gain of a voltage control oscillator and the cavity the 
transfer function of the accelerating cavity assumed to be 
unity. 
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Figure 1: System model 

 

2.2 Phase and radial loop 

2.2.1 Basic concept 

 
To design the phase and radial loop, the phase transfer 
function Bϕ and the radius transfer function BR have to be 
taken into account. 
It corresponds to the following system: 
 

 

Figure 1: Phase and radial system 
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This system can be described using two state variables, 
the first one being R/b and the second one being the phase  
ϕ as shown in : 
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leading to the state space representation: 
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Equation (2) defines the continuous state space 
representation [As, Bs, Cs, Ds]. 
 

From this continuous representation, a discrete state space 
representation (Asdiscr, Bsdiscr, Csdiscr, Dsdiscr) can be 
determined, using an exact zero order hold discretization. 

One more state, the integral of the radius error “interror”, 
will be added to that representation in order to eliminate 
the static error:  

( )RRrefnn −+=+ interrorinterror 1 =Z (3) 

The final state matrix is: 
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and the final command matrix is: 
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where the observation matrix is: 
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2.2.2 Controller determination 

 

Using the discrete state space representation established 
in paragraph 0, a set of feedback gains 

[2] [ ]intKKK Rϕ  will be determined using pole 

placement so that the feedback signal is: 

( )ZKRKKU R int−+−= ϕϕ   (7). 

A pole placement approach has been chosen for the 
easiness to determine the feedback gains. 
The closed loop poles are selected as poles of a Bessel 
filter because of its damping factor of 0.86 and its 
easiness to determine. The closed loop bandwidth is 
chosen to be at least rad/s 2002 ⋅⋅= πωcl  to have a 20ms 
settling time. The closed loop bandwidth determines how 
fast the system responds.  
The bandwidth of the Bessel filter is related to its settling 
time by [3]: 

settling
cl t

704.0
**2 πω =  (8) 

A Bessel filter dynamic is chosen because of its non 
overshooting behavior. 
 
The controller has been implemented in a cascaded 
structure, as shown in Figure 2. 
 

 

Figure 2: Feedback in a cascaded structure 

 

2.2.3 Closed Loop results 

 
The following figures show the phase and radial loop 
response. 
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Figure 3: Simulation results for a 1 mm radial step, radius 
response 
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Figure 4: Simulation results for a 1 mm radial step, phase 
response 

The radius and the phase reach their final value in 1ms. 
The following figure gives the system and its controller 
open loop Bode plot which confirms the 200 Hz 
controller bandwidth. 
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Figure 5: System with controller open loop Bode plot 

From Figure 5 one can read a gain margin of 10 dB (it 
will depend on the beam damping) and a phase margin of 
80 degrees. 
 

2.3 Digital Synchronization loop 

2.3.1 Basic concept 

 
Synchronization means that the beam, and thus the rf, is 
rigidly phased (on average) with the reference:  

�b - �ref = �set ( 9) 

The value of ϕref and ϕrf (and ϕb)  is incremented at each 
clock cycle (the clock is supposed to be common). If the 
reference and the beam were at the same frequency, the 

output of the phase subtracting point would be constant. 
In the general case it will be a saw tooth with a repetition 
rate equal to the frequency difference. The output of the 
phase comparator can be forced to a constant value during 
acceleration by using an offset signal. 
 

 

Figure 6: Introduction of an offset signal for a constant 
error signal 

The error signal is now the difference of an extrapolated 
���������	��
������	��� MR (the moving reference phase) 
	�
� ���� ���������� �	��� ref. The principle is that the 
���������� ��� ����������
���� off plus the increment of 

rf is equ	�� ��� ���� ���������� ��� ref. The resulting ϕMR - 
ϕref is thus constant during the accelerating cycle. This 
trick enables the synchronization loop to be closed at any 
time. 
 
The synchronization loop being closed, the performance 
of the mechanism will entirely rely on how you bring the 
moving reference phase to zero.  
 
To design the synchronization loop, the phase transfer 
function Bϕ and the frequency transfer function Bw have 
to be taken into account. 
It corresponds to the following system: 

 
 

 
 
 

Figure 7: Synchronization system 

This subsystem can be described using three state 
variables, the first one being ϕb and the second one being 
the beam frequency ωb and the third one the phase ϕ. 
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leading to the state space representation: 
 

�

�

U
x

x
x

y

U
kx

x
x

x

x
x

dt

d

ss

ss

DC

b

b

BA

s
















+






























=














=














+































−
=















0

0

0

100

010

001

0

0

010

00

010

3

2

1

03

2

1
2

3

2

1

�����

�� �����

ϕ
ω
ϕ

ω

 ( 11) 

Equation (2) defines the continuous state space 
representation [As, Bs, Cs, Ds]. 
 

From this continuous representation, a discrete state space 
representation (Asdiscr, Bsdiscr, Csdiscr, Dsdiscr) can be 
determined, using an exact zero order hold discretization. 

One more state, the integral of the phase error is added. 
 

2.3.2 Controller determination 

 

Using the discrete state space representation established 
in paragraph 0, a set of feedback gains 
[ ]intKKKK

bb ϕωϕ  will be determined using pole 

placement so that the feedback signal is: 

( )( )∫ −−++−= brefbb KKKKU
bb

ϕϕϕωϕ ϕωϕ int   

(12). 

The poles are again chosen to be the poles of a 200 Hz 
third order Bessel filter. 
The controller has been implemented in a cascaded 
structure, as shown in Figure 2. 
 

 

Figure 8: Feedback in a cascaded structure 

 

2.3.3 Closed Loop results 

The following figure shows the synchronization loop 
response. 
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Figure 9: Synchronization loop response 

 
 
Figure 10. gives the system and its controller open loop 
Bode plot which confirms the 200 Hz controller 
bandwidth. 
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Figure 10. System with controller open loop Bode plot 

From Figure 10, one can read a gain margin of 15 dB (it 
will depend on the beam damping) and a phase margin of 
80 degrees. 
 
 

3. CONCLUSION 
 
The use of a state space representation leads to an easy 
design of two feedback loops, which provide good 
stability and performance. Moreover, the feedback gains 
could be calculated so as to take into account the 
accelerator parameter variations. 
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