

Instrumentation Development Test Facilities and Plans

Beam Delivery challenges Ongoing projects: $\rightarrow \sigma_z$

Marc Ross

Challenges:

- Damping Ring
- Linac
- Beam Delivery
 - Special requirements
 - Usually in small numbers
 - Difficult to prototype and test
 - Extreme optics design

Start with Beam Delivery...

September 4, 2002

Experience from SLC BD instrumentation

- Most added after completion
- Not designed into the optics
 - Not easy to fit in
- FFTB included several improvements but had a different goal
- At one time 2x12=24 scanners
 - About half of the SLC total!

- Needed:
 - Incoming matching
 - Emittance
 - Stability
 - Internal matching
 - Beam based alignment
 - Mgnt offset/IP tuning
 - Measure of collimation effectiveness
 - Energy / δ
 - Luminosity related
 - Disruption related

Complex optics with discrete phase advance / long range cancellation - new strategy

Nanobeam instrumentation

Marc Ross – SLAC

Wire scanner 'trials' in the SLC BD

- Incoming emittance, matching and coupling (5)
- First virtual 'IP' (1)
- Second IP (3)
- Dispersion match (2)
- Angular divergence (1)

Wire scanner requirements -

- matching vs emittance -
- absolute accuracy vs scanner to scanner systematic difference

September 4, 2002

Beam Delivery Instrumentation Requirements:

Incoming matching & stability check: Collimation <-> correction Correction <-> final doublet Extraction line

Luminosity:

- Short term variation
- Real-time precision
- Correlations (E,P...)
- Frequency of invasive measurements
- Luminosity vs δ
- <u>Luminosity strategies</u>

September 4, 2002

• Luminosity strategies depend on:

- <u>Where the luminosity comes</u> <u>from</u>
- Geometric emittance
- Pinch enhancement
- Many dilutions...
- IP beam instrumentation should provide this real time –

FFS corrections

- Corrections modeled after FFTB / SLC
 - Isn't (/wasn't) this only the beginning?
 - What were the problems with the above correction schemes?
 - Took a long time
 - Did not always converge
 - Defeated by simple hardware problems/upstream problems
 - Did not identify specific error sources
- BBA issues:
 - Rotated BPM's
 - BPM systematics
 - Mover engineering

'local' corr FF uses mover knobs for waist, η_{xy} & x<->y coupling

September 4, 2002

FFS tuning

- the quadrupoles are aligned using beam-based alignment 1. techniques such as the shunting method,
- the sextupoles are aligned in a similar manner, 2.
- trajectories are fit to verify the first-order optics and fix 3. the phase advance between sextupoles,
- the sextupoles are set to minimize the chromaticity, 4.
- global tuning correctors (knobs) are used to tune both the 5. first-order and the nonlinear corrections using luminosity measurements.

Instrumentation RD is needed to validate real-life high confidence BBA

September 4, 2002

Instrumentation parameters

- BPM
- Transverse profile
- Longitudinal profile/
- δ
- Correlation
- Beam loss
- Secondary beam
- Stability monitoring

 $\sigma_{x,y}/10$ Relative calibration to 5% $\sigma_{x,y}/10$ δ has features ~0.03% (60um@20cm η /6um@2cm η)

September 4, 2002

Nanobeam instrumentation Marc Ross – **SLAC**

11

• BPM

- Multi-bunch, multi-purpose
- Better calibration
- Much more intensive RD urgent
- Significant advances possible
- Xverse Profile (tnt) *
 - Laser, OTR, ODR
- Bunch length (tnt) *
 - Deflection structure
- Correlations (tnt) *
 - Cavity BPM
- Special interaction region (tnt)

Nanobeam instrumentation Marc Ross – **SLAC**

September 4, 2002

tnt ==totally new technology

BPM's are the most expensive and most critical monitors

* Something actually happening

Very good resolution possible – 25 nm achieved in FFTB few nm possible by <u>limiting spatial dynamic range</u>

RD challenge to improve TM110 mode

Bench test of cavity BPM

Naito - 2002

Fig. 28 Position scan(calibrated)

Longitudinal distribution & correlations

- Many dilutions initially appear as linear correlations
 - Linac single bunch wakes foremost
 - Collision sensitivity
- IP is surrounded by 'crab' type cavities
 - -x and y
 - Useful for both correction and monitoring
 - How will this work?
- What additional methods can be used to monitor longitudinal distribution and correlations?

Electro-optics

Cavity BPM signals

September 4, 2002

VDD

Principal of Electro Optic Detection

Timing jitter is an issue with ultra-short bunches

- LCLS simulation, M. Borland

Brute force Calibrated Expensive Excellent resolution

September 4, 2002

Nanobeam instrumentation Marc Ross – **SLAC**

SLAC/DESY TTF2

SLAC LCLS – Krejcik/Emma (EPAC 02)

Tilted bunch

- Point charge offset by δ
- Centered, extended bunch tilted at slope δ/σ_t
- <u>Tilt signal is in *quadrature*</u> to displacement
- The amplitude due to a tilt of δ/σ is down by a factor of:

with respect to that of a displacement of δ

(~bunch length / Cavity Period)

$$V_{y}(t) = aq\delta\sin(\omega t)$$

$$V_t(t) = \frac{a\,\delta q}{2}\cos\omega t\sin\frac{\omega\sigma_t}{2}$$

$$\frac{V_t}{V_y} = \frac{\omega\sigma_t}{4} = \frac{\pi\sigma_t}{2T}$$

Example

- Bunch length
- Tilt tolerance
- Cavity Frequency

 $\sigma_t {=}~200~\mu m/c {=}~0.67~ps$

d = 200 nm

F = 11.424 GHz

- Ratio of tilt to position sensitivity $\frac{1}{2}\pi f\sigma_t = 0.012$
- A bunch tilt of 200 nm / 200 µm (1 mrad) yields as much signal as a beam offset of 0.012 * 200 nm = 2.4nm
- Need BPM resolution of ~ 2 nm to measure this tilt
- Challenging!
 - Getting resolution
 - Separating tilt from position
- Use higher cavity frequency?

Need 1 mrad tilt sensitivity for linac tuning

Angled trajectories

- A trajectory that is not parallel to the cavity axis also introduces a <u>quadrature</u> signal (in phase with 'tilt' signal)
- Projected 'dipole' sensitivity is increased by σ_z /cavity length ~ 50

Relative normalized precision Beam position/beam traj angle

$$\sigma_{y \text{ res}} / \sigma_{y} \sim 5\%$$

$$\sigma_{y' \text{ res}} / \sigma_{y'} \sim 10x$$

Cavity BPM				
	FFTB (Shintake)	ATF ext line (Vogel)	X-band (Naito)	
f	5.712	6.426	11.424	(GHz)
position resolution	20	200	200	(nm)
Vt/Vy (200um sig_z)	0.6%	0.7%	1.2%	(.5 pi sig_t f)
achieved 'projected				
dipole resolution'				
(200um sig_z)	3.3	29.7	16.7	um
achieved 'tilt' angle				
resolution	17	149	84	mrad
achieved 'trajectory				
angle resolution'	3	26	30	urad
cavity 'length'	15	15	8	mm

ATF $\sigma_z \sim 8mm$ gives expected tilt resolution ~ 0.1mrad

ATF Cavity BPM – V. Vogel / H. Hayano

ATF extraction line C-band cavity L = 12mm, Radius = 26mm, f = 6426MHz, λ =46.6mm Movers – x, y, pitch (*y*-*z*)

Problem (?) with cavity BPM:

Signal beating with offset in only one plane

If there is a large offset in one plane, and little in the other, we see beating between modes

(nominally cylindrically symmetric cavity)

Nanobeam instrumentation Marc Ross – **SLAC**

September 4, 2002

28

– Angle signals from ATF cavity BPM

I Q response as the cavity is moved vertically using mover

The angle is arbitrary (phase offset between ref and BPM cavity)

A 'monopole' beam with an axial trajectory should give a (0,0) response at some point

Nanobeam instrumentation Marc Ross – **SLAC**

September 4, 2002

IP instrumentation

- - $\begin{array}{l} \underline{x \leftrightarrow z, \ y \leftrightarrow z, \ E \leftrightarrow z} \\ IP \ is \ surrounded \ by \ `crab ` \\ cavities \end{array}$

J/NLC

- Position
- Angle
- Timing

- <u>**σ**</u>_{*x,y*}
- <u>BSM</u>
 - E, **P**, geometric
- Pair monitor
- Rad bha bha

- Feedback
- Extraction line loss

September 4, 2002

Reminder: what SLC had...

6 channel (spatial) γ BSM
Always used sum signal
Ethylene pressure E_cut 0.3 Atm.

Rad. bha-bha monitor Parasitic energy band – 0.85>E/E_b>.65

Invasive – wire scanners and screen profile monitors

September 4, 2002

Disruption

- NLC 1.5
- TESLA 1.8
- SLC 1.4 @150 Z's/hr

Disruption tightens geometric tolerances

- Bunch length
- Longitudinal distribution
- -yz/xz correlations
- $-\Delta t$
- Crab cavity system

September 4, 2002

Beamstrahlung (BSM)

- (Bonvicini et.al. at CESR)
- Power
 - BSM 3-4% of beam power \rightarrow TESLA <u>300KW</u> / NLC <u>400KW</u>
- Divergence
 - 300 µrad rms
- Distribution
 - Non-Gaussian, non-symmetric

September 4, 2002

the BSM must be an integral part of the machine

September 4, 2002