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Measuring the W boson mass

Higgs search aside, main goal of LEP 2 (’96 - 2000) has been
high precision measurement of the W mass, mW

mW measured through reconstruction of W+ & W− within a
kinematic fit, with beam energy (Eb) as constraint
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How well should Eb be known?

δmW

mW
=

δEb

Eb

Statistical error of LEP 2 sample ∼ 25 MeV. So should know
Eb to 20 MeV (2 × 10−4) or better... and ‘know’ means really
know! Fully correlated between channels, experiments & years

Surely easy ? At LEP 1 Eb measured to 2 × 10−5 for mZ



mW and the end of spin

Not so! The prime tool of LEP 1 energy calibration was
resonant depolarisation (RDP), but this no longer works!
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Here be Ws !

Instead, recall Eb ∝
∮
B . dl & perform magnetic extrapolation

Dipole Yoke

Coil
Beam Pipe

NMR Probe

Flux Loop

NMR probes

(precise, continual readout,

low sampling – only 16)

Flux loop

(high sampling – 96.5%,

infrequent readout)

NMRs used in defining energy model, & flux loop to set error



Magnetic extrapolation method

Calibrate NMR readings against known energy in RDP region
(40-60 GeV), and apply in W+W− regime (∼ 100 GeV).
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It works & is stable! However, how does above ‘banana’ evolve
to 100 GeV, & is sampling representative of total

∮
B . dl ?

Cross-calibrate NMRs vs flux loop...

No significant non-linearity!

→ δEb ≈ 20 MeV

...but method indirect. Needs cross-checking!



Checking the extrapolation – Qs vs VRF

Eb obtainable by fitting synchrotron tune against RF volts
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→ Eb at 80 GeV with an error of < 2 × 10−4:

• Results need to be extrapolated (a little) to 100 GeV

• Appear to validate NMR model & agree with flux loop



Checking the extrapolation – the LEP spectrometer

Can we measure Eb directly to 1–2 ×10−4 in the W regime?

The idea (1997)

ϑ
∆θ ∝

∮
B . dl
Eb

Better still, measure change when going from 50 to 100 GeV

The reality (1999)
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Such a measurement imposes extremely tight tolerances !



Main Spectrometer Topics

Brief overview on following issues:

• Knowledge of dipole bending field

• Knowledge / effect of field in ‘field free’ region

• Shielding of BPM blocks

• Wire position sensors

• RF Sawtooth

• BPMs – problems & global data analysis

All serious data taking took place in 2000 – not
ideal as in competition with the Higgs search...

∼ 17 fills in which spectrometer calibrated at low
energy and ramped to ∼ 93 GeV

Other experiments scanned low energy region to
cross-check performance

Plus several dedicated experiment to investigate
systematic effects



Knowing
∮
B . dl

Prior to installation, conducted extensive mapping campaign
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Value of model residuals 90 vs 50 GeV ∼ 1 × 10−5



Knowing
∮
B . dl

Cross-check in situ inside beam pipe with burrowing ‘mole’

Two NMR Probes

Coil for End Field Measurement

8 cm

Further mapping in 2001 and 2002 with improved Hall probes
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Mapping Campaigns:

System 1 (LAB 1999)

System 2 (LAB 1999)

System 2 (LEP Tunnel 1999)

System 1 (LAB 2001)

System 1 (LAB 2001 using 1999 Hall Probes)

Results seen are very consistent. Excursion understood as Hall
probe systematic. Max uncertainty induced on Eb < 2× 10−5 !



Environmental fields

Field free arms of BPM triplets are not field free!
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(Spikes come from permanent magnets in vacuum pumps.
Energy variation from currents in magnet cables.)

Causes a bias which must be accounted for in analysis:

Field magnitude monitored fill to fill with flux gates → stable



Synchrotron shielding

Synchrotron power ∝ E4
b – reaches kW/m

Copper Absorber

Flexible Bellows

BPM

BPMs stable to < 0.2◦C → block expansion < 1.5µm
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Wire Position Sensors and Synchrotron Radiation

Stability of BPMs monitored by stretched wire sensors

Jura Limestone Block

Stretched Wire
Position Sensors

These showed alarmingly large jumps at start of fill
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Not real! Artefact caused by ionisation of air

→ Cured with shielding and careful centring of wires

Real movements found to be small → corrected for in analysis



RF sawtooth

Nearly 3 GeV lost and replenished per revolution at 100 GeV

• Need to relate local measurement of spectrometer to
mean energy measured by resonant depolarisation

→ Correction of 20–50 MeV

• Dependent on misalignments, misphasings, voltage scale
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→ Residual error of 5 MeV



Beam Position Monitor performance

Use normal LEP BPMs, but with high precision electronics
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Triplet residuals demonstrate required µm resolution achieved !

BUT “large” shifts are seen BETWEEN energy points!
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Possible reasons:

◦ Bunch length ?

◦ Beam size ?

◦ Drift with time ?

→ No certain answer on mechanism, but can be calibrated out



Global analysis of Spectrometer Measurements

System of 3 + 3 BPMs gives 9 different energy estimates.
Because of BPM systematics these are not identical.

Study results from each combination vs size of systematic...
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...observe some combinations more stable than others



Global analysis of Spectrometer Measurements

Linear fit allows extrapolation back to zero systematic...
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...all combinations give same result

Conclusions confirmed in parallel analysis at low energy



Conclusions

Analysis of spectrometer data, & other LEP 2 energy
calibration measurements, are very close to completion.

Verdict on spectrometer:

• ‘Crash programme’ carried out very efficiently

• Understanding of (relative) dipole field to 1 − 2 × 10−5

• Stability (∼ 2µm) and monitoring (< 1µm) of apparatus
in fierce environment

• BPMs – very high performance achieved, but systematics
at 2 − 4µm level

• Final result looks likely to have a precision of ≤ 2 × 10−4

And in wider context:

• Checks on magnetic extrapolation from flux loop,
synchrotron tune and spectrometer appear to be
consistent, with similar precisions

• Likely final uncertainty on Eb to be 1 − 1.5 × 10−4

• Becomes a small error contribution to mW

Nice result from many years of close collaboration between
(a few) machine physicists, particle physicists & engineers!


