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Measuring the W boson mass

Higgs search aside, main goal of LEP 2 ('96 - 2000) has been

high precision measurement of the W mass, myy

my measured through reconstruction of W & W~ within a
kinematic fit, with beam energy (F}) as constraint
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How well should E} be known?

5771”,7 5Eb

myy by

Statistical error of LEP 2 sample ~ 25 MeV. So should know
Ej to 20 MeV (2 x 107%) or better... and ‘know’ means really
know! Fully correlated between channels, experiments & years

Surely easy ? At LEP 1 Ej, measured to 2 x 107 for my



my and the end of spin

Not so! The prime tool of LEP 1 energy calibration was
resonant depolarisation (RDP), but this no longer works!
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Instead, recall £, < ¢ B .dl & perform magnetic extrapolation

NMR probes

Dipole Yoke

(precise, continual readout,
Coil

low sampling — only 16)

NMR Probe
Flux loop

(high sampling — 96.5%,

Flux Loop

infrequent readout)

NMRs used in defining energy model, & flux loop to set error



Magnetic extrapolation method

Calibrate NMR readings against known energy in RDP region
(40-60 GeV), and apply in WTW ™ regime (~ 100 GeV).
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It works & is stable! However, how does above ‘banana’ evolve
to 100 GeV, & is sampling representative of total ¢ B.dl ?

Cross-calibrate NMRs vs flux loop...

No significant non-linearity!
— 6Eb ~ 20 MeV

...but method indirect. Needs cross-checking!



Checking the extrapolation — Qg vs VRp

E), obtainable by fitting synchrotron tune against RF volts

60/60 optics
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— F) at 80 GeV with an error of < 2 x 107%:
e Results need to be extrapolated (a little) to 100 GeV

e Appear to validate NMR model & agree with flux loop



Checking the extrapolation — the LEP spectrometer

Can we measure Ey, directly to 1-2 x107* in the W regime?

The idea (1997)
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Better still, measure change when going from 50 to 100 GeV

The reality (1999)
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Such a measurement imposes extremely tight tolerances !



Main Spectrometer Topics
Brief overview on following issues:

e Knowledge of dipole bending field

e Knowledge / effect of field in ‘field free’ region
e Shielding of BPM blocks

e Wire position sensors

e RF Sawtooth

e BPMs — problems & global data analysis

All serious data taking took place in 2000 — not
ideal as in competition with the Higgs search...

~ 17 fills in which spectrometer calibrated at low
energy and ramped to ~ 93 GeV

Other experiments scanned low energy region to
cross-check performance

Plus several dedicated experiment to investigate
systematic effects



Knowing ¢ 5 . dl

Prior to installation, conducted extensive mapping campaign

NMR Probe

Model developed to relate ¢ B . dl to values of 4 reference
NMRs in dipole as function of coil temperature etc
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Knowing ¢ B . dl

Cross-check in situ inside beam pipe with burrowing ‘mole’

Coil for End Field Measurement

Further mapping in 2001 and 2002 with improved Hall probes

Mapping Campaigns:
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Results seen are very consistent. Excursion understood as Hall
probe systematic. Max uncertainty induced on E}, < 2 x 107 |



Environmental fields

Field free arms of BPM triplets are not field free!
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(Spikes come from permanent magnets in vacuum pumps.
Energy variation from currents in magnet cables.)

Causes a bias which must be accounted for in analysis:
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Field magnitude monitored fill to fill with flux gates — stable




Synchrotron shielding
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BPMs stable to < 0.2°C — block expansion < 1.5um

Synchrotron power oc E; — reaches kW /m



Wire Position Sensors and Synchrotron Radiation

Stability of BPMs monitored by stretched wire sensors

Stretched Wire
4 Position Sensors

Jura Limestone Block
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These showed alarmingly large jumps at start of fill
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Not real! Artefact caused by ionisation of air
— Cured with shielding and careful centring of wires

Real movements found to be small — corrected for in analysis



RF sawtooth

Nearly 3 GeV lost and replenished per revolution at 100 GeV

e Need to relate local measurement of spectrometer to
mean energy measured by resonant depolarisation

— Correction of 20-50 MeV

e Dependent on misalignments, misphasings, voltage scale
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Beam Position Monitor performance

Use normal LEP BPMs, but with high precision electronics
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Triplet residuals demonstrate required pum resolution achieved !

BUT “large” shifts are seen BETWEEN energy points!
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— No certain answer on mechanism, but can be calibrated out



Global analysis of Spectrometer Measurements

System of 3 4+ 3 BPMs gives 9 different energy estimates.
Because of BPM systematics these are not identical.

Study results from each combination vs size of systematic...
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...observe some combinations more stable than others



Global analysis of Spectrometer Measurements

Linear fit allows extrapolation back to zero systematic...
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...all combinations give same result

Conclusions confirmed in parallel analysis at low energy



Conclusions

Analysis of spectrometer data, & other LEP 2 energy
calibration measurements, are very close to completion.

Verdict on spectrometer:
e 'Crash programme’ carried out very efficiently
e Understanding of (relative) dipole field to 1 — 2 x 107

e Stability (~ 2um) and monitoring (< 1um) of apparatus
in fierce environment

e BPMs — very high performance achieved, but systematics
at 2 — 4um level

e Final result looks likely to have a precision of < 2 x 1074

And in wider context:

e Checks on magnetic extrapolation from flux loop,
synchrotron tune and spectrometer appear to be
consistent, with similar precisions

e Likely final uncertainty on Ej, to be 1 — 1.5 x 1074

e Becomes a small error contribution to myy

Nice result from many years of close collaboration between
(a few) machine physicists, particle physicists & engineers!



