yy at the SLC/SED IR

Mayda M. Velasco Northwestern Univ.

The Basic Proposal

- Goal:
 - Proof-of-principle of $\gamma\gamma$ collision at SLD/SLC IR
 - → Measure luminosity, validate our developing tools
 - Test required optics for a JLC/NLC $\gamma\gamma$
- Requirements:
 - Revive the SLC, <\$2M
 - Install laser and new beampipe
 - Run and observe $\gamma\gamma \rightarrow e+e$ in the SLD calorimeter (LAC), and luminosity monitors (LUM)

- Optical assembly design
- Wavefront and optics quality requirements
 - Key elements for laser power and and on-axis beam intensity
- Beam pipe design
- Alignment system for mirrors
- Beamsplitter for laser pulses

Measurement & Software Test

• Luminosity Measurement versus predictions from available beam simulation packages

• e to γ conversion efficiency

Engineering Test Facility at SLC

- Laser : 1µm, 0.1 Joule laser pulse (25% $e \rightarrow \gamma$ conversion efficiency)
- Event rates at Min-SLC is around 10xLINX

Process	Cross Section	Event Rate
$\gamma\gamma \rightarrow e^+e^-$	(nb)	LINX (sec ⁻¹)
LUM	2	10-5
LAC	210	10-3
$\gamma e^{-} \rightarrow \gamma e^{-}$		
LUM	0.5	10-5
LAC	78	10-3
$e^-e^- \rightarrow e^-e^-$		
LUM	228	0.02
LAC	94	10-3

Photon Collider at SLC/SLD Optical Assembly

¹/₂ scale version of the NLC design Position of final quads in SLC sets the scale

Final focus optics are fixed Steering mirrors are on piezo movers

- Unknown factor: Optics damage
 - IP cannot often be opened up to fix the optics
 - Radiation damage to the coating
 - Laser power damage to the mirrors

Photon Collider at SLD/SLC Hardware Beampipe

- Initial design of a beampipe has been done
 - New beampipe must be plug replaceable with the old
 - Can this be done before demounting the old beampipe?
 - Other IP hardware in this region that must be integrated?
- New quads or old?
 - Can the old quads accommodate light pipe?
 - The old setup may not have any wiggle room.

Photon Collider at SLD/SLC Alignment System

→ Optical system aligned before installed in IR

- Similar systems in use
 - ½ Scale prototype of optics / alignment system is currently under construction
 - Operation in end of FY02
 - Demonstration of alignment tolerance

Experimental program

- Pulse-to-pulse conversion measurement
 - Electrons that have interacted are off-energy
 - They will be lost in the extraction line
 - Measure the bunch charge before the IP and just before reaching the beam dump
 - Collect data on the stability and consistency of the laser light delivered to the conversion point
- Direct luminosity measurement
 - $-\gamma\gamma \rightarrow e+e-$
 - The SLD calorimeter will be revived in order to observe this process

e⁻ and γ beams at SLC $\gamma\gamma$

→ Comparison of CAIN with a simple PANDORA parameterization

Allowable conversion rate at SLC- $\gamma\gamma$ is limited by the need to minimize multiple Compton backscatters... radiation of tunnel & heating of beam components

Kinematic separation of $ee \rightarrow \gamma\gamma$, $e\gamma \rightarrow e\gamma$, $ee \rightarrow ee$

- The 3 possible scatters can be separated solely with their kinematic information:
 - Identify two hit events in the calorimeter
 - No tracking required

Angular Distributions

- γγ is peaked forward much less strongly than ee
- Full calorimetric coverage in angle will greatly improve the counting rate
- 1000 γγ→ee takes 4 month with Min-SLC design & only using LUM, 100x faster with LAC

Outstanding issues

- Tunnel radiation simulation
 - Particle losses are known, contact radiation group at SLAC for limits and remediation
- Installation plan
 - The old beam pipe surely needs to come out and be measured before we will be ready to begin construction on the new
 - Otherwise, laser installation should be orthogonal
- Run plan
 - Mainly a question of the luminosity delivered and how long it will take to make a measurement in the Calorimeter
- Costing
 - Should be driven by achieving the best luminosity/cost ratio
 - Maximize bunch charge
 - FF improvements useful?