"With the fire from the fireworks up above..."

The Solenoid and the Crossing Angle

Nanobeams 2002 03-Sep-2002

P. Tenenbaum

Actual work done by:

John Irwin
Tor Raubenheimer
PT

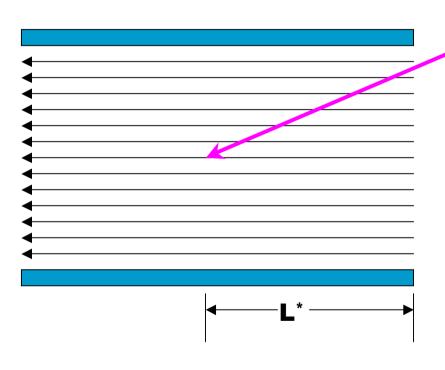
Intro: Why Have a Crossing Angle?

- Long bunch trains, short bunch spacing
 - NLC: 1.4 nsec
 - eliminates parasitic beam-beam effects
- Strong beam-beam interaction
 - lots of pairs, beamstrahlung, other junk
 - disrupted primary beam with big outgoing divergence, energy spread
 - can go out a different hole from incoming beam
- Removal of extracted beam
 - Don't need kickers, septa, etc to take outgoing beam to the dump

(I assume that the answer to, "Why have a solenoid in the detector?" is self-evident)

How big a Crossing Angle?

- Parasitic beam-beam: 3-4 mrad will take care of this
- Engineering, other constraints may push to bigger angles
- NLC: 20 mrad horizontal crossing angle
 - Leave room for doublet magnets, vacuum chambers, etc.
- CLIC: 20 mrad horizontal crossing angle
 - bigger angle needed at higher energy due to bigger divergence of collision debris

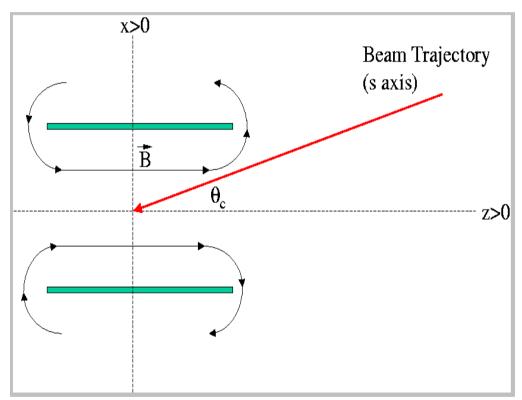


What's the Problem?

- Deflection of the beam in the solenoid field
 - produces offset, angle at IP do the beams miss?
 - Produces dispersion and coupling are the beams too big?
- Synchrotron Radiation
 - How much spot size growth from the quantum excitation?
- Consider only the solenoid for now
 - ignore any embedded quads more complicated problem!

Optical Effects – What We're Afraid Of

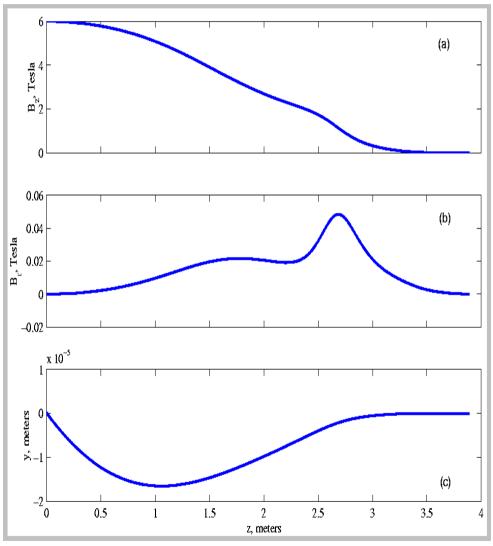
"Hard-Edged" solenoid model:


- \rightarrow Field = B_0 for $\pm L^*$ about IP
- → Drops instantly to zero for |z| > L*
- \Rightarrow Δy* = (L*)²/2Bρ * B₀ * sin θ_c (note: θ_c = xing-angle / 2)

NLC at 500 GeV CM: 370 µm

Yikes!

The Real Situation

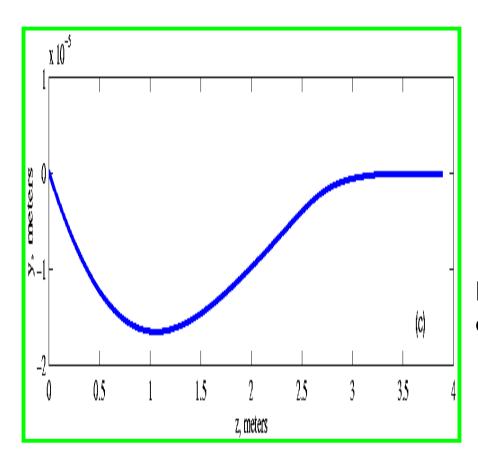

Longitudinal field deflects beam $\sim \sin \theta_c$

Radial field deflects beam $\sim \cos \theta_c$ in opposite direction

Which one wins?

Which One Wins?

Radial and longitudinal deflections will cancel @ IP, iff:


→ Azimuthal symmetry preserved

→ Beam initially aimed at symm point of the solenoid

→ Beam does not pass thru solenoid windings ("barrel") but only current-free ("endcap") region

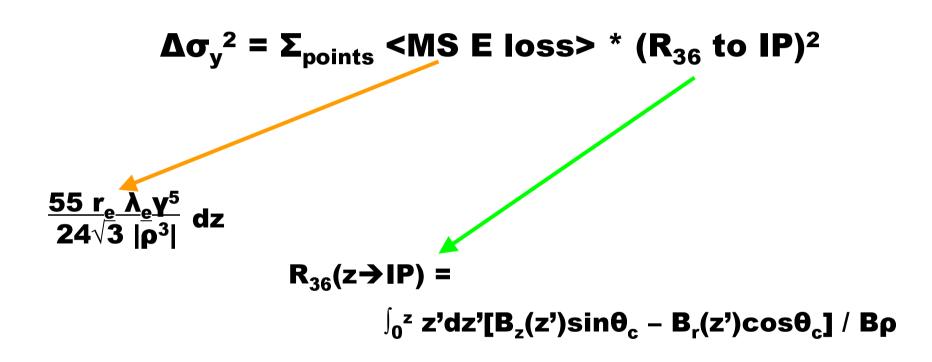
The Fine Print

Deflection cancels at IP

Hence dispersion, coupling,
offset at IP → 0 also

y' at IP nonzero

Beams exit IR with vertical offset, sensitive to energy can be up to 1 mm or more!

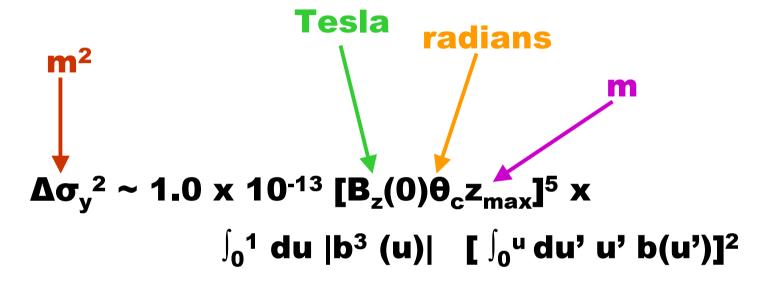


SR Spot Size Dilution

- Beam bends vertically in solenoid
 - first one direction, then the other
 - Must emit SR as a result of bending
- Dispersion zero at IP, but R₃₆ from various points to IP nonzero
- Increase in RMS energy spread + nonzero
 R₃₆ to IP = SR spot size dilution
- Unrecoverable luminosity loss!

How Bad is SR blowup?

A Few Transformations...


Define $b(z) \equiv [B_z(z')\sin\theta_c - B_r(z')\cos\theta_c] / [B_z(z=0)\sin\theta_c]$

Define $z_{max} = z$ position where $R_{36}(z \rightarrow IP) = 0$

Define $u \equiv z / z_{max}$

An Interesting Result

- → All dimensionful scaling parameters out front
- → All integrals over dimensionless "field shape" parameters
- → Beam size growth independent of energy!

How Bad Is It?

- Putting in NLC parameters...
 - $\Delta\sigma_y$ is 0.03 to 0.1 nm (depends on details of solenoid map used in calc)
 - Adds in quadrature with 2-3 nm vertical beam size
 - Negligible!
 - But watch out for that 5th power scaling!