"He took it all too far, but boy could he play guitar"

Post-Linac Collimation in Linear Colliders

Nanobeams 2002 02-Sep-2002

Images Provided By:

T. Maruyama, D. McCormick, M. Ross, PDG, Fernandes Guitars

Requirements in Brief

- Stop primary particles which would make unacceptable detector backgrounds
- Stop secondary particles which would make unacceptable detector backgrounds
- Protect detector and IR from beam core in event of large excursion
- Protect collimation system itself from beam core!
- Limit pathological beam dynamics from collimators (wakefields)

Primary Particles

- What sets the collimator apertures?
 - Primary beam hitting the vacuum chambers? NO!
 - SR from last quads hitting vertex detector? YES!
- Don't forget SR from bends in final focus...

Primary Particles (2)

- What sets the gap of the energy slit?
 - FF $\eta_{x'}^*$ -- off-energy particles take up some of x aperture
 - FF optics particles go out of control for some δ
 - Cleanup of collimated particles (energy slit downstream of beta slits, like NLC BDS)

Primary Particles (3)

- LC collimation a "layered defense"
 - upstream dedicated collimation system
 - More collimators in final focus
 - mainly stop primary beam particles which are rescattered in collimation system
- Why not do all collimation in FF?

Secondary Particles

- Biggest issue: muons
 - Produced when primary particles stopped
 - Go thru anything
 - Muon flux in detector sets
 - allowed halo (#/pulse)
 - attenuation of main collimation system

Primary Particles: SLC Experience

Just How Bad was the SLC Experience with Primary Beam Halo Particles?

- Pretty bad -- ~10% of the beam in early days!
 - could see bunch charge drop downstream of main linac collimators
- Amenable to tuning
 - improved to 1%, then 0.1%, of primary beam over life of SLC
- Source not understood
 - Inadequate diagnostics, modeling
- Future LC collimation systems attempt to address shortcomings in SLC
 - Caveat emptor!

Self-Defense

- Protecting detector easy
 - constraint on SR tighter than needed for machine protection
- Protecting collimators tougher
 - need >> 10 R.L.material to stop ~allpower
 - Beam power density huge
 - direct hit on coll will demolish it!

Material	X_0 , cm	$0.0 X_0$	$0.5 X_0$ Target	$1.0 X_0 \text{ Target}$	$20 X_0$ Target	
Beryllium	37.5		$185~\mu$		$300~\mu$	
Carbon	20.1	45μ	76μ	$105~\mu$	$123~\mu$	
Titanium	3.7	120μ	180μ	$300~\mu$	$750~\mu$	
Ti alloy	3.7	70μ	100μ	$170~\mu$	$440~\mu$	
Copper	1.5	275μ	$470~\mu$	$760~\mu$	$2.7~\mathrm{mm}$	
Iron	1.8	$210~\mu$	360μ	$590~\mu$	2.1 mm	
Steel	1.8	$140~\mu$	230μ	$380~\mu$	1.3 mm	

Self-Defense (2)

- Solution: make the beam big at the thick collimator
 - use a thin collimator (spoiler) with multiple coulomb scattering
 - beam blows up downstream at thick collimator (absorber)
- Drawbacks
 - still need to make spoiler strong enough to survive
 - Reduces collimation efficiency not every particle hitting spoiler hits the absorber!

Self-Defense (3)

- How hard do you work to protect spoiler?
 - Thin: classical eqns for heating damage don't apply
 - situation is not as bad as you think
 - betatron oscillations can (maybe) be trapped
 - active MPS
 - Energy oscillations harder to trap

Self-Defense: Summation

- Blow beam up at energy spoilers
 - use β_v and η_x for this spoiler must survive!
- Blow beam up at betatron spoilers
 - but not as much hits will be rare
 - use "consumable spoilers" can tolerate ~1000 hits/year (rotating wheels!)
- Use linear optics to ensure halo big at absorbers
 - so bunch train thru spoilers is big enough at absorbers to be stopped w/o damage
- Add absorbers in FF to clean up rescatters

Wakefields

- Introduce deflection and beam shape change when beam passes off-axis thru collimator
 - geometric wake: due to change in vacuum chamber x-section
 - Resistive: due to material with finite conductivity near beam

Wakefields (2)

- Near center of coll gap: linear effect
 - Δy' α y in gap
 - jitter amplification: n sigmas jitter → n(1+A²)¹/² sigmas
 - Coll at doublet phase → angle at doublet phase
 → offset at IP phase (critical)
 - Also: energy colls couple energy jitter to x jitter of beam
 - $A_{\delta} = \#$ sigmas x jitter / % energy jitter
- Near-wall wakes: nonlinear (but saturating kick)
 - mainly machine protection issue is nonlinear kick big enough to hit the wall?

Wakefields (3)

Summary of Wakefield Jitter Amplification Coeffs for LC Designs

Parameter	TESLA			NLC			CLIC		
	\mathcal{A}_{x}	\mathcal{A}_{y}	\mathcal{A}_{δ}	\mathcal{A}_{x}	\mathcal{A}_{y}	\mathcal{A}_{δ}	\mathcal{A}_{x}	\mathcal{A}_{y}	\mathcal{A}_{δ}
δ Spoilers	0.0450	0.0890	0.3458	0.0010	0.0450	0.0530	0.0345	0.0	0.0
δ Absorbers	0.0063	0.0335	0.0582	0.0055	0.0163	0.0199	0.0477	0.	0.
β Spoilers	0.0845	1.3630	0	0.0819	0.7232	0	0.1721	0.9844	0
β Absorbers	0.0329	0.5145	0	0.0033	0.0140	0	0.0307	0.0388	0
FF Spoilers	0.0553	0.7248	0.0023	0	0	0	0	0	0
FF Absorbers	0.0255	0.3069	0.0372	0.0627	0.5392	0.0020	0	0	0
Total	0.2496	3.0318	0.4435	0.1543	1.3378	0.0748	0.2846	1.0231	0.

(the whole story is documented in LCC-Note-0101, on the NLC web site...)

Wakefields (4) – Emittance Growth

- Emittance growth eqn for near-center:
 - $\Delta \varepsilon/\varepsilon$ ~ (0.4nA)², where n = # sigmas jitter
 - for reasonable values of n (<1), should be no problem...