Coherent Synchrotron Radiation Effect in the NLC Damping Ring

Tor Raubenheimer for J.H. Wu and Gennady Stupakov SLAC

Motivation

- **Stupakov-Heifets theory** [PRST-AB, 5(2002)054402] **indicates a potential instability due to the CSR in dipoles;**
- Experimental observations of bursting IR radiation
 - John Byrd, et al., ALS, LBNL
 - Larry Carr, Jim Murphy, et al., NSLS, BNL
 - Bessy-II

Review of S-H theory

1-D Vlasov Equation:

$$\frac{\partial \mathbf{r}}{\partial s} - \mathbf{h} \mathbf{d} \frac{\partial \mathbf{r}}{\partial z} - \frac{r_0}{\mathbf{g}} \frac{\partial \mathbf{r}}{\partial \mathbf{d}} \int_{-\infty}^{\infty} dz' d\mathbf{d}' w(z - z') \mathbf{r}(\mathbf{d}', z', s) = 0$$

Distribution Function

$$r = r_0(d) + r_1(d, z, s)$$

and

$$\boldsymbol{r}_1 = \hat{\boldsymbol{r}}_1 e^{-i\boldsymbol{w}s/c + ikz} = \hat{\boldsymbol{r}}_1 e^{-i\operatorname{Re}(\boldsymbol{w})s/c + \operatorname{Im}(\boldsymbol{w})s/c + ikz}$$

Im(w)>0 means instability

Impedance Z(k)

• Dipole

$$Z(k) = iA \frac{k^{1/3}}{R^{2/3}}$$

with

$$A = 3^{-1/3} \Gamma\left(\frac{2}{3}\right) (\sqrt{3}i - 1)$$

Detailed study has been done by G. Stupakov and S. Heifets, [G. Stupakov & S. Heifets, PRST-AB, 5(2002)054402]

Consideration

- Energy modulation $Z(k) \sim k^{1/3}$
- The energy spread and momentum compaction smears this process and stabilized the instability. This 'damping' effect scales as k
- Two competing processes k vs. k^{1/3} => fastest growth at smaller k.

Threshold is determined by the longest wavelength allowed by the pipe cut-off $1 \sim 1 \text{ mm}$

CSR effects in a wiggler An estimate

• Approximate the wiggler as 2N pieces of Dipoles

$$R(s)^{-1} = \frac{k_w K |\cos(k_w s)|}{g}$$

average

$$\overline{R}^{-1} = \frac{2}{p} \frac{k_w K}{g}$$

Results of Dipole and Wiggler CSR at pipe cut-off frequency

 Threshold drops from 1.75×10¹⁰ to 7.25 ×10⁹

It is serious!!! Recall the design value is 7.5×10^9 ;

Is bending magnet approach valid?

Characteristic Length

- Incoherent Synchrotron Radiation Critical Wavelength: 0.6 Å;
- Cooperative/formation length for a radiation wavelength $\bm{l}_{\rm f}$

– Dipole:
$$L_f \sim \sqrt[3]{24R^2 I_f}$$

- Wiggler: $I_f \sim I_{\text{FEL}} \sim 13 \text{mm} \Rightarrow L_f \sim \text{Wiggler period}$

For λ shorter than FEL wavelength \rightarrow critical wavelength, we could model the Wiggler as 2N pieces of Dipoles **but** for longer need to include interference

Wake Potential Approach II

 Focus on the averaged long-range wake potential. [E.L. Saldin, E.A. Schneidmiller & M.V. Yurkov, NIMA 417(1998)158]

$$\overline{W}_W(z) = -k_W \frac{K^2}{2g^2 k_W z} \left[2\sin^2 \left(\frac{2g^2 k_W z}{K^2}\right) + \frac{1}{K} \right]$$

Is it reasonable? It only contains the contribution from the fundamental and scales as 1/s at small s

Universal Numerical Wake Potential for Large K

Impedance for Wiggler

Connect to FEL instability

- 1-D theory predicts very short-gain length
- However, minimal beam-radiation overlap
- **TDA simulation gives** $L_G^{wiggler} \approx 31 \,\mathrm{m}$

Single pass isn't dangerous, but how about multiturn? Need numerical simulations with momentum compaction for ring.

- Instability threshold is uncomfortably close!
 - Factor of 2~3 without wiggler
 - Factor of 1 with incorrect wiggler
 - ??
- Calculated a wake and impedance function for the wiggler
 - Transient effects?
- Need to complete calculation for threshold
- Need to understand operation above threshold
 - No effect seen in ALS and NSLS on beam, but it also used to be stated that the microwave instability was benign!
- Need numerical simulations

Forthcoming topics

- Based on the numerical full-range wake potential, we will try to get the full-range impedance numerically and compare analytical results at
 - Small and large frequency limits;
 - Compare Re[Z(w)] with the wiggler radiation power
- Compute growth rate as a function of frequency;
 - Away from singularity; (Logarithmic divergence)
 - Near singularity. (Does energy spread suppress it?)
- Try to understand the following topics:
 - Finite undulator length;
 - Finite electron beam size;
 - Gaps between the undulators, de-phasing!
- Try to understand the transition from CSR instability to FEL instability;
- Complete the code for simulation!