Simulation of Laserwire in BDS

G. Penn

Wednesday, 4 September 2002 Nanobeams 02 Laser-Wire MiniWorkshop Lausanne

LWS as CLIC diagnostic

Beam emittance diagnostics:

- needed by physics experiments
- evaluate performance
- commissioning lattice "emittance bumps"

LWS is non-destructive (small total cross section)

• relative number of electrons intersecting laser beam

)}}}}

- transverse density scan if small enough laser width
- does not directly measure beam angles

Concerns about background and statistical noise

In electron rest frame, photon is upshifted by γ_0 , so $\nu' \approx \gamma_0 \nu_0$

(or 2 γ_0 if originally antiparallel)

If photon energy is still less than electron rest mass, nearly elastic collision, with scattering angle distribution (in rest frame)

 $d\sigma/d\Omega \propto 1 + cos^2\theta$

Photons which are nearly backscattered then get upshifted by another factor of 2 γ_0 when go back to lab frame

Scattered frequencies as high as $2 \gamma_0^2 \times \text{initial frequency}$

- with angles < 1 / γ_0 (much smaller deflection for electrons)
- still a small fraction of electron energy

- Define $\xi = hv'/m_ec^2$, where v' is the laser frequency in the electron rest frame – key parameter for behavior
- When $\xi > 1$, can't ignore energy exchange in electron rest frame. Net result:
 - the photon can acquire most of the electron's energy
 - final electron energy is at least $m_e^2 c^4 / 2 h v_0$, so final $\gamma > \gamma_0 / 2 \xi$
 - typical angle of photon, maximum angle of electron

 $\sim \xi / \gamma_0 \approx h \nu_0 / m_e c^2$

electrons with largest angle have energy $\sim \gamma_0 \; m_e c^2 \; / \; \xi$

Scaling for LWS signal

- Main demands for LWS: large signal, good resolution
- electron beam params: ε_X , ε_Y , σ_X , σ_Y , τ_B , charge -- only control size
- laser: peak power P_L , σ_L , τ_L , λ
- look at measuring Y profile:

need $\lambda < \sigma_L < \sigma_Y$ and $\sigma_Y / \sigma_X > \lambda / 2 \pi \sigma_L$ = angle of laser cone

number of scatters $\propto N_e P_L (\lambda / \sigma_Y) [\tau_L / (\tau_L^2 + \tau_B^2)^{1/2}] (\lambda / E_B)$

take as large $\lambda,\,\tau_L$ as acceptable

Compton regime only

want large $\xi = h\nu'/m_ec^2 = 5 E_B[TeV] / \lambda[\mu m]$

For higher energies, need more laser power for same signal.

CLIC parameters:

electrons: 0.67 nC per bunch

20 μ spot size, 20 x 680 nm normalized emittance energy 1.5 TeV, typical angle 0.3 - 11 nrad 0.25μ wavelength, 5 μ width, 1 mJ per pulse laser: 0.12 ps matches 35 µm bunch length scatter params: $hv_0 / m_e c^2 \approx 10^{-5} \qquad \xi_0 \approx 30$ gas detector, signal is from low energy electrons diagnostics: A) strong sextupoles at 20 + 40 m; B) long 100 gauss dipole field roughly **3000** scattering events per pulse

Scatter Plot

CLIC – using sextupoles

number per metei

Degraded electrons can be swept out of the beam by magnetic fields.

Short Sextupoles:

peak has 15% of scattered electrons, but less peaked in energy feasibility will depend on detection method, lattice design

Long Dipoles:

simple design works well

signal is similar to secondaries produced by lost TeV particles

Background estimate, 1 TeV particle / meter hitting pipe – reasonable?

Measure photons? Harder to separate from halo and SR

CLIC Simulations

GEANT4 results, for GeV deposited in detector

- with 1 halo electron hitting beampipe per meter (very clean beam).
- corr to time-average of 3.7 mW per meter, for CLIC timing

<u>System</u>	<u>Signal</u>	<u>Noise</u>
sextupoles, shielded Pb detector	65	120
sextupoles, shielded gas detector	0.14	0.10
dipole, unshielded gas detector	0.78	0.05
dipole, 500 GeV beam	1.8	0.016

- Noise caused by spray of secondaries from (mostly local?) losses
- For sextupoles, have large bending angles, maybe can separate signal from background based on direction.

graph obtained from G. Blair

Laser Parameters

9

Design parameters compared with currently available lasers:

	Design	Nd:YAG	<u>Ti:Sapphire</u>
wavelength	250 nm	266 nm	800 nm
bunch length (FWHM)	150 fs	3 ns	50 fs
energy per pulse	1 mJ	200 mJ	0.7 mJ
rep rate	100 Hz	10 Hz	1 kHz
energy fluct	?	8 %	1 %
peak power	5 GW	0.05 GW	1 GW after triple
eff. overlap energy	1 mJ (by def)) 0.1 mJ*	0.2 mJ

*enhanced by overlap with multiple bunches in pulse train

For further research and GEANT4 simulations:

collimation and other noise reduction

optimize detector design for degraded electrons

fit more carefully into beam delivery system (BDS) design

look into enlarging beam cross-section, if necessary

study sources of background: characterize beam halo, losses second look at photons