Energy Calibration Overview

- Baseline design:
 - $\delta E/E \sim 1 \times 10^{-4}$ is required from physics
 - if better precision needed later \Rightarrow redesign
 - Should have something like a 50m footprint
 - put this in your lattice designs
 - dL/dE measurement needed somewhere
 - diagnostics downstream of IP will be important
 - need a decent extraction line environment (★)

- Redundant measurements will be necessary
 - cross-checks required
 - more than one technique/location
ECAL Needs and R&D Plan

• Design Studies (Lattice Locations, Run the Numbers)
 – Schemes:
 • BPM-based Spectrometer
 • WiSRD
 • Laser backscattered electron spectrometer
 • Polarization Rotation
 – We should be able to arrive at a consensus as to which methods are most promising!

• Evaluation of Operational issues
 – measurement time required
 – diagnostics provided (bunch-by-bunch?, etc.)
ECAL R&D II

• RF BPMS:
 – ECAL probably most demanding consumer (~20nm)
 – resolution, electronic stability, stability of null point
 – sensitivity to beam tilts
 – need experiments! (ATF?)

• “Straight Line” techniques
 – optical straightness monitor (Oxford)
 – stretched wire systems (CERN)
 – need experiments!

• Mechanical stability
 – nanomovers (technical demonstration needed)
ECAL R&D III

• Beam Tests Required
 – too many surprises in past experiences
 – careful design, iteration will be necessary
 – try to get as close as possible to LC conditions