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Technologies Discussed

� Technologies that are not part of “core” 
accelerator technology.
� Not Structures, Magnets, BPMs,  Vacuum

� Unusual materials or systems
� Liquid metals, low noise mechanical systems, 

optics

� NOT necessarily “Advanced” or even 
“innovative”. 
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Systems Discussed

� Timing distribution and stabilization: 
�  Picosecond stability over >10 Kilometers

� Collimation: 
� Of beams which can destroy any solid material

� Beam Diagnostics 
� Mapping beam phase space

� Vibration Stabilization Technologies
� Low noise seismometers
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Timing and RF Phase Distribution
� RF Phase stability: 

� Typically require ~ 1° over length of machine

� For NLC: 0.25 picoseconds for 30 Kilometers

� Use beam measurements for long term feedback

� Need about 5 picosecond long term stability from 
distribution system

� Trigger Timing Stability / Accuracy
� Typically ~50 picoseconds stability / jitter.

� Use count down timers from phase distribution 
system: Easily meets timing requirements
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Timing Distribution Technologies

� Both copper cable and fiber optics have similar 
phase coefficients with temperature ~2x10-5/°C
� Note: fiber coefficient due to change in index with 

temperature

� Would require 0.005 °C temperature stability: tough!
� Need to use feedback
� Fiber preferred over Copper due to lower loss 

and lower cost.
� Radiation sensitivity must be considered

� Use fiber for long haul, coax in tunnel.
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NLC Timing System
� Point to point fiber system (~50 drops)
� Laser modulated by RF carrier
� Measure transmission fiber length using light 

reflected from far end of fiber
� Adjust length using fiber spool in oven in 

series with main fiber
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RF Distribution Test System
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1 Month, 10 °C Temperature Step

1ps
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Performance test for 1 month

1ps
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Timing System Status

� Test system meets NLC requirements for 
phase stability and phase noise

� Fault tolerant system  architecture developed
� Completely single point failure immune

� Prototype system (10-U rack mount) under 
construction 

� On hold due to other higher priorities
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Linear Collider Collimation 
� Full beam will destroy any solid 

object at nominal LINAC beta 
functions (10um spot size).
� ~10 MW average power

� ~1010e-/pulse, 1012e-/train (NLC), 

� Even a single bunch will cause 
damage

� Large beta functions -> increase 
spot size
� Tight alignment tolerances

� Wakefield problems



12

Collimation
� Use “Spoiler / Absorber” scheme
� Thin (~1 radiation length) spoiler

� Increases transverse momentum spread

� Thick absorber downstream
� Absorbs high beam power, but low density

� Critical damage problems are on spoiler.
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Spoiler Materials
� Damage typically caused by thermal fracture
� Carbon (glassy or graphite) has best damage 

threshold (in calculation). ~<1016e-/cm2

� Poor conductivity -> resistive wake problems

� Diamond? (suspect radiation damage issues)

� Beryllium ~2.5x1015e-/cm2

� Some concerns about toxicity 
(may be less serious than radiation hazard)

� Titanium similar to Beryllium
� None will survive full beam
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Indestructible Spoilers ?
� Use high power lasers for collimation:

� Laser power requirements (wildly) impractical with 
current technology.

� Liquid metal jets: 
� No known way to obtain micron level surface stability

� Nonlinear magnetic collimation
� Very useful idea, but can't do entire job

� Too much like “accelerator physics” to discuss here

� Will be used for NLC (in addition)

No clear solution (Yet)
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Spoiler Schemes

� Must assume that occasionally the Machine 
Protection System will fail 

� Can design “Consumable” spoiler to remain 
usable after some number of damage events.
� Not too difficult: NLC baseline design

� Alternately design “Repairable” spoiler which 
can be continuously repaired after damage. 
� In- vacuum spoiler factory.

� Difficult: Requires exotic technology
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Consumable 
Spoiler

After damage is detected, wheels
are rotated to new location

Wheels referenced to central
frame  (with BPMS) for 
stability
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Composite Spoiler Jaws
� Would like collimation (spoiling) depth to 

change abruptly as a function of R. 
� For wakefields would like surface to change 

gradually as a function of R.
� Use Composite Copper Beryllium spoiler.
� Be is "invisible" to the beam.
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Prototype Unit

Gap 0-700 microns
stability: 0.5 um / C

Rotation: causes 7um gap 
variation due to out of round 
support wheels: easy to fix

Real mechanicals, but rotors
are Aluminum, not Be/Cu

Prototype Be/Cu bond

Be

CuCu over Be
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Repairable Spoilers

� Since we can't make an indestructible collimator, 
we design one we can continuously repair in 
vacuum. 

� Several crazy ideas considered, finally selected:
� Use a solid wheel rotating in a pool of liquid 

metal. Liquid metal freezes onto the wheel and 
serves as the spoiler surface. After damage the 
surface is reformed on each rotation.
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Solidifying Metal 
Spoiler
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Materials Compatibility
� Liquid metal needs to adhere to the substrate, 

but not dissolve it.
� Note: solder on copper doesn't work – solder 

dissolves copper. 

� After lots of “Alchemy” found:
� Substrate: Niobium

� Smoothing Roller: Molybdenum

� Liquid metal: Tin 
� vapor pressure at melting  

< 10-11 Torr

BAD
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Proof of Principal Test

Liquid Tin

InGaSn eutectic
(cooling)

Niobium wheel
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Solidifying Metal Spoiler 
Prototype Performance

� Vacuum good (10-8 Torr), limited by pump.
� Problems with bearings in UHV and at high 

temperature.
� Switching to SiN bearings will probably fix this.

� Work well in initial test

� Works with a thin (~100 micron?) coat 
formed by surface tension.

� Thicker coat (>3 mm) works briefly, but 
eventually Tin solidifies in the wrong places.
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Thick Coating: 
Problems

Tin builds up on sides
of roller
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Possible Fix for "Thick Coat"
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Collimation System Status

� NLC baseline has passive survival for energy 
collimation and consumable spoilers for 
position collimation

� Prototype consumable spoiler meets most 
requirements, remaining problems appear 
easy to fix
� Damage detection system required

� Solidifying metal repairable spoiler is under 
development
� Project on hold due to other priorities
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Beam Diagnostics
� Transition Radiation Beam Profile 

Measurement
� Tested at KEK ATF, (est.) 2um sigma resolution

� Damage issues

� High resolution options

� Beam Slicer / Dicer
� Deflection cavity bunch length monitor

� OLD idea – used at SLAC in mid 1960s

� Can take slice of any pair of phase space 
parameters



28

Transition Radiation Imager

� Transition radiation produced when a charged 
particle enters or leaves a conducting surface.

� Like a phosphor screen, but better resolution 
� No grain size or thickness limits

� Resolution NOT limited to 1/γ
� TR has long angular tails – OK diffraction limit.

� Roughly resolution is 2x worse than for uniform 
source. 

� Measured 5 micron spots at ATF
� Believe instrument resolution is 2 microns
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Spot Image (~15 micron sigma)
Note tilt on spot

Beam direction

Target

Camera

Transition radiation monitor at ATF at KEK
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Damage Issues
� Limited to ~1015e-/cm2. 
� Carbon – best damage threshold

� Glassy carbon can have good surface finish

� Low conductivity gives smaller optical signal

� Beryllium – best damage threshold for a metal
� Industrial experience with polishing surface. 

� Low Z, little beam scattering / radiation

� Some concerns about toxicity

� Titanium
� Good damage threshold
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Improved Resolution?
� TR image of a spot has a null on axis. 

� Depth of null determined by beam size

� BUT: All null measurement type tricks suffer 
in the presence of beam tails. 
� Essentially measures RMS of entire beam.

� Not clear what is ultimate resolution
� Very unlikely to reach nanometer sizes

� For small spots beam damage is also a limit

� Diffraction radiation: Similar to TR, but does 
not require beam interception
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Deflection Cavity Temporal 
Measurement.

� Can use a RF deflection cavity to “streak” the 
beam onto a screen to obtain temporal profile

� Can this work at high energy? YES!
� Normalized Y Emittance 10-8M-R, Gamma =~106

� Beta ~100M. -> Transverse momentum 10KeV. 

� Deflector at 10 GHz, 10 MeV get 20 fs resolution.

� Can even sweep in X (emittance ~10-6M-R) 
with 100MeV transverse cavity
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P. Emma et. al.
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Beam Slicer / Dicer

� Use 2 deflection cavities, X, Y. Sweep one 
phase slowly, other quickly.
� Raster scan out all pulses in train (~10x10 grid)

� Single shot  measurement on all pulses.

� Damage: If we allow 1015e-/cm2 and 1010e- / 
bunch, want ~30 micron spots.

� Use upstream quads, and bends to correlate 
any pair of 6-D phase space parameters 
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X deflect Y deflect

ZX, ZY,
ZX', ZY'
XY, XY'
XX', YX'
YY', X'Y'

Bend
X, Y

EZ, EY, EY'

EX, EX'

X, X'
Y, Y'
telescope

Correlate any pair of axes

Note: Need to locate off axis to allow pulse stealing
and for MPS 

Transition radiation
screens

Transverse Structures
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Slicer / Dicer Issues / Status

� So far only a basic concept. Need beam 
modeling, etc to check practicality

� Machine Protection: If it can streak the beam, 
it can drive it into the wall.

� May not really need all phase space 
combinations: can use simpler system

� Deflection cavity systems in use or being 
installed at SLAC, DESY, BNL.
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Vibration Stabilization for NLC 

Finally:Something actually related to this meeting.
� Nanometer beam sizes at the IP. 
� Need beam / beam deflection feedback at low 

frequencies. (<1Hz)
� May use fast beam / beam feedback within a train

� Tails, Banana etc. Don't want to rely on this (NLC).

� Would like mechanical feedback above ~1Hz. 
� Sensors appear to be the critical technology
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Vibration Stabilization: Sensors
� Interferometers: Measure relative to ground

� Nanometer resolution in commercial devices

� Operate to very low frequency

� Use at IP requires detector penetration

� Inertial Sensors: Relative to “fixed stars”
� Nanometer resolution at >0.1Hz in commercial 

devices  (STS-2)

� Commercial sensors are magnetic and physically 
large: Can't use them in the detector. 

� Develop custom capacitive readout sensor
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Inertial Sensor Requirements / 
Design

�  Nonmagnetic and compact. 
� Operate in detector solenoid field.

�  <1nm integrated noise above 0.1Hz. 
� Corresponds to ~2x10-9M/S2/Hz1/2.

� Want high frequency limit > ~60Hz

� Use capacitive readout
� Use cantilever with "pre-bent" spring.
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Baseplate

Slow centering
adjust (mechanical)

Flexure

Spring (pre-bent)

Cantilever (Al)

Tungsten mass
and electrodeInsulator

Slow readback
(pot) Electrostatic

pusher (feedback)
150um gap, 50V

RF drive
in ~500MHz
~100 mW

Split
Delay
1 ns

I/Q
I output – feedback
to pusher

Q output – feedback
to frequency (phase)
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Estimated sensor performance
Resonant Frequency (ANSYS) 1.5 Hz

Next resonant mode (ANSYS) 96 Hz

Resonant Q (estimate from experiment) >100

Thermal Noise (theoretical calculation) 1.5x10-10M/S2/Hz1/2

Electrode gap 300 microns

RF drive power ~100mW

Thermal limit electrical resolution (cantilever) 10-13M/Hz1/2

Estimated electronics noise figure (includes losses):  20dB

Electrical noise converted to acceleration 10-10M/S2/Hz1/2

Requirement: 2x10-9M/S2/Hz1/2, or ~10X calculated noise.
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Sensor Mechanical Drawing

Tungsten Mass

BeCu Spring

Electrodes
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Sensor Under Construction
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Vibration Sensor Status
� Sensor mechanical components and 

electronics under construction
� Vibration Stabilization System operating with 

commercial (low sensitivity sensors)
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Other Unusual Technologies
� Swept frequency interferometers for 

alignment and feedback
� Ultra-high power lasers for positron 

production
� Semiconductor physics for polarized photo-

cathodes
� Ultrasonic structure breakdown location
� X-ray microscopes for synchrotron radiation
� Fast pulsed power (Kickers and modulators)
� Active high power microwave devices


