Innovative Technological Solutions for Future Accelerators

Not really a good title, better would be:

Weird Technology for Accelerators

Eric Doyle, Dorel Bernstein, David Brown, Eugene Cisneros, Carlos Damien, Paul Emma, Leif Eriksson, <u>Josef Frisch</u>, Linda Hendrickson, Thomas Himel, Douglas McCormick, Janice Nelson, Richard Partridge, Marc Ross, Knut Skarpaas VIII, Toni Smith (And a hoard of others)

Next Linear Collider Project – SLAC

H. Hayano, T. Naito, N. Terunuma (And a hoard of others) **ATF Project, KEK**

Technologies Discussed

- Technologies that are not part of "core" accelerator technology.
 - Not Structures, Magnets, BPMs, Vacuum
- Unusual materials or systems
 - Liquid metals, low noise mechanical systems, optics
- NOT necessarily "Advanced" or even "innovative".

Systems Discussed

- Timing distribution and stabilization:
 - Picosecond stability over >10 Kilometers
- Collimation:
 - Of beams which can destroy any solid material
- Beam Diagnostics
 - Mapping beam phase space
- Vibration Stabilization Technologies
 - Low noise seismometers

Timing and RF Phase Distribution

- RF Phase stability:
 - Typically require ~ 1° over length of machine
 - For NLC: 0.25 picoseconds for 30 Kilometers
 - Use beam measurements for long term feedback
 - Need about 5 picosecond long term stability from distribution system
- Trigger Timing Stability / Accuracy
 - Typically ~50 picoseconds stability / jitter.
 - Use count down timers from phase distribution system: Easily meets timing requirements

Timing Distribution Technologies

- Both copper cable and fiber optics have similar phase coefficients with temperature $\sim 2x10^{-5}/^{\circ}C$
 - Note: fiber coefficient due to change in index with temperature
 - Would require 0.005 °C temperature stability: tough!
- Need to use feedback
- Fiber preferred over Copper due to lower loss and lower cost.
 - Radiation sensitivity must be considered
 - Use fiber for long haul, coax in tunnel.

NLC Timing System

- Point to point fiber system (~50 drops)
- Laser modulated by RF carrier
- Measure transmission fiber length using light reflected from far end of fiber
- Adjust length using fiber spool in oven in series with main fiber

RF Distribution Test System

1 Month, 10 °C Temperature Step

Performance test for 1 month

Timing System Status

- Test system meets NLC requirements for phase stability and phase noise
- Fault tolerant system architecture developed
 - Completely single point failure immune
- Prototype system (10-U rack mount) under construction
- On hold due to other higher priorities

Linear Collider Collimation

- Full beam will destroy any solid object at nominal LINAC beta functions (10um spot size).
 - ~10 MW average power
 - $\sim 10^{10} \text{e}^{-1}/\text{pulse}, 10^{12} \text{e}^{-1}/\text{train}$ (NLC),
 - Even a single bunch will cause damage
- Large beta functions -> increase spot size
 - Tight alignment tolerances
 - Wakefield problems

Collimation

- Use "Spoiler / Absorber" scheme
- Thin (~1 radiation length) spoiler
 - Increases transverse momentum spread
- Thick absorber downstream
 - Absorbs high beam power, but low density
- Critical damage problems are on spoiler.

Spoiler Materials

- Damage typically caused by thermal fracture
- Carbon (glassy or graphite) has best damage threshold (in calculation). ~<10¹⁶e⁻/cm²
 - Poor conductivity -> resistive wake problems
 - Diamond? (suspect radiation damage issues)
- Beryllium $\sim 2.5 \times 10^{15} \text{e}^{-1}/\text{cm}^{2}$
 - Some concerns about toxicity

(may be less serious than radiation hazard)

- Titanium similar to Beryllium
- None will survive full beam

Indestructible Spoilers ?

- Use high power lasers for collimation:
 - Laser power requirements (wildly) impractical with current technology.
- Liquid metal jets:
 - No known way to obtain micron level surface stability
- Nonlinear magnetic collimation
 - Very useful idea, but can't do entire job
 - Too much like "accelerator physics" to discuss here
 - Will be used for NLC (in addition)

No clear solution (Yet)

Spoiler Schemes

- Must assume that occasionally the Machine Protection System will fail
- Can design "Consumable" spoiler to remain usable after some number of damage events.
 - Not too difficult: NLC baseline design
- Alternately design "Repairable" spoiler which can be continuously repaired after damage.
 - In- vacuum spoiler factory.
 - Difficult: Requires exotic technology

Wheels referenced to central frame (with BPMS) for stability

Composite Spoiler Jaws

- Would like collimation (spoiling) depth to change abruptly as a function of R.
- For wakefields would like surface to change gradually as a function of R.
- Use Composite Copper Beryllium spoiler.
- Be is "invisible" to the beam.

Prototype Unit

Real mechanicals, but rotors are Aluminum, not Be/Cu Gap 0-700 microns stability: 0.5 um / C

Rotation: causes 7um gap variation due to out of round support wheels: easy to fix

Prototype Be/Cu bond

Repairable Spoilers

- Since we can't make an indestructible collimator, we design one we can continuously repair in vacuum.
- Several crazy ideas considered, finally selected:
- Use a solid wheel rotating in a pool of liquid metal. Liquid metal freezes onto the wheel and serves as the spoiler surface. After damage the surface is reformed on each rotation.

Materials Compatibility

- Liquid metal needs to adhere to the substrate, but not dissolve it.
 - Note: solder on copper doesn't work solder dissolves copper.
- After lots of "Alchemy" found:
 - Substrate: Niobium
 - Smoothing Roller: Molybdenum
 - Liquid metal: Tin
 - vapor pressure at melting
 < 10⁻¹¹ Torr

Proof of Principal Test

InGaSn eutectic (cooling)

Niobium wheel -

Liquid Tin

Solidifying Metal Spoiler Prototype Performance

- Vacuum good (10⁻⁸ Torr), limited by pump.
- Problems with bearings in UHV and at high temperature.
 - Switching to SiN bearings will probably fix this.
 - Work well in initial test
- Works with a thin (~100 micron?) coat formed by surface tension.
- Thicker coat (>3 mm) works briefly, but eventually Tin solidifies in the wrong places.

Thick Coating: Problems

Tin builds up on sides of roller

Collimation System Status

- NLC baseline has passive survival for energy collimation and consumable spoilers for position collimation
- Prototype consumable spoiler meets most requirements, remaining problems appear easy to fix
 - Damage detection system required
- Solidifying metal repairable spoiler is under development
 - Project on hold due to other priorities

Beam Diagnostics

- Transition Radiation Beam Profile Measurement
 - Tested at KEK ATF, (est.) 2um sigma resolution
 - Damage issues
 - High resolution options
- Beam Slicer / Dicer
 - Deflection cavity bunch length monitor
 - OLD idea used at SLAC in mid 1960s
 - Can take slice of any pair of phase space parameters

Transition Radiation Imager

- Transition radiation produced when a charged particle enters or leaves a conducting surface.
- Like a phosphor screen, but better resolution
 - No grain size or thickness limits
- Resolution NOT limited to $1/\gamma$
 - TR has long angular tails OK diffraction limit.
 - Roughly resolution is 2x worse than for uniform source.
- Measured 5 micron spots at ATF
 - Believe instrument resolution is 2 microns

Transition radiation monitor at ATF at KEK

Spot Image (~15 micron sigma) Note tilt on spot

Damage Issues

- Limited to $\sim 10^{15} \text{e}^{-1}/\text{cm}^2$.
- Carbon best damage threshold
 - Glassy carbon can have good surface finish
 - Low conductivity gives smaller optical signal
- Beryllium best damage threshold for a metal
 - Industrial experience with polishing surface.
 - Low Z, little beam scattering / radiation
 - Some concerns about toxicity
- Titanium
 - Good damage threshold

Improved Resolution?

- TR image of a spot has a null on axis.
 - Depth of null determined by beam size
- BUT: All null measurement type tricks suffer in the presence of beam tails.
 - Essentially measures RMS of entire beam.
- Not clear what is ultimate resolution
 - Very unlikely to reach nanometer sizes
 - For small spots beam damage is also a limit
- Diffraction radiation: Similar to TR, but does not require beam interception

Deflection Cavity Temporal Measurement.

- Can use a RF deflection cavity to "streak" the beam onto a screen to obtain temporal profile
- Can this work at high energy? YES!
 - Normalized Y Emittance 10^{-8} M-R, Gamma =~ 10^{6}
 - Beta ~100M. -> Transverse momentum 10KeV.
 - Deflector at 10 GHz, 10 MeV get 20 fs resolution.
- Can even sweep in X (emittance ~10⁻⁶M-R) with 100MeV transverse cavity

P. Emma et. al.

Beam Slicer / Dicer

- Use 2 deflection cavities, X, Y. Sweep one phase slowly, other quickly.
 - Raster scan out all pulses in train (~10x10 grid)
 - Single shot measurement on all pulses.
- Damage: If we allow 10¹⁵e⁻/cm² and 10¹⁰e⁻ / bunch, want ~30 micron spots.
- Use upstream quads, and bends to correlate any pair of 6-D phase space parameters

Note: Need to locate off axis to allow pulse stealing and for MPS

Slicer / Dicer Issues / Status

- So far only a basic concept. Need beam modeling, etc to check practicality
- Machine Protection: If it can streak the beam, it can drive it into the wall.
- May not really need all phase space combinations: can use simpler system
- Deflection cavity systems in use or being installed at SLAC, DESY, BNL.

Vibration Stabilization for NLC

Finally:Something actually related to this meeting.

- Nanometer beam sizes at the IP.
- Need beam / beam deflection feedback at low frequencies. (<1Hz)
- May use fast beam / beam feedback within a train
 Tails, Banana etc. Don't want to rely on this (NLC).
- Would like mechanical feedback above ~1Hz.
- Sensors appear to be the critical technology

Vibration Stabilization: Sensors

- Interferometers: Measure relative to ground
 - Nanometer resolution in commercial devices
 - Operate to very low frequency
 - Use at IP requires detector penetration
- Inertial Sensors: Relative to "fixed stars"
 - Nanometer resolution at >0.1Hz in commercial devices (STS-2)
 - Commercial sensors are magnetic and physically large: Can't use them in the detector.
 - Develop custom capacitive readout sensor

Inertial Sensor Requirements / Design

- Nonmagnetic and compact.
 - Operate in detector solenoid field.
- <1nm integrated noise above 0.1Hz.
 - Corresponds to $\sim 2x10^{-9}M/S^2/Hz^{1/2}$.
- Want high frequency limit > ~60Hz

- Use capacitive readout
- Use cantilever with "pre-bent" spring.

Estimated sensor performance

Resonant Frequency (ANSYS)	1.5 Hz
Next resonant mode (ANSYS)	96 Hz
Resonant Q (estimate from experiment)	>100
Thermal Noise (theoretical calculation)	$1.5 x 10^{-10} M/S^2/Hz^{1/2}$
Electrode gap	300 microns
RF drive power	~100mW
Thermal limit electrical resolution (cantile	ever) 10^{-13} M/Hz ^{1/2}
Estimated electronics noise figure (includes losses): 20dB	
Electrical noise converted to acceleration	$10^{-10} M/S^2/Hz^{1/2}$
Requirement: $2x10^{-9}M/S^2/Hz^{1/2}$, or ~10X calculated noise	

Vibration Sensor Status

- Sensor mechanical components and electronics under construction
- Vibration Stabilization System operating with commercial (low sensitivity sensors)

Other Unusual Technologies

- Swept frequency interferometers for alignment and feedback
- Ultra-high power lasers for positron production
- Semiconductor physics for polarized photocathodes
- Ultrasonic structure breakdown location
- X-ray microscopes for synchrotron radiation
- Fast pulsed power (Kickers and modulators)
- Active high power microwave devices