Laser Wires: Technical Challenges Outstanding

Josef Frisch
Challenges

- Measuring small beam sizes
 - Wavelength requirements
 - CW cavity laser wire challenges
 - Tricks to achieve better resolution (difficult)
- Low beam energies - backgrounds
- Temporal structure
- Optical damage
Wavelength Requirements

For Scan of Y spot size:
Small Y size -> small laser waist
Large X size -> large laser Rayleigh range
Required Wavelength

- For laser size to contribute <10% of spot size
- Use $R_L = \sigma_x$, and $\sigma_\gamma = 0.3 \sigma_y$ (Approximate)

$$\lambda = \frac{4}{9} \pi \frac{\sigma_y^2}{\sigma_x}$$

Example: NLC 1000 Linac end: 7.5x0.9 micron spot. Need 0.15 micron light!
Simulated Laser Scan

Beam scan for 7 x 120 micron (TESLA) beam

\[\lambda = 0.7\, \text{um} \]
\[R_l = 120\, \text{um} \]
\[\sigma = 2.6\, \text{um} \]
Wavelength vs. Laser Options

• 1 Micron: Nd:YAG.
 – Commercial systems to ~1J, 5 nanosecond
 – Nd:YLF, Nd:Glass, Yb:YAG, etc, etc for various application requirements.

• 0.5, 0.35, 0.25 micron: Frequency multiplied Nd:YAG (or similar)
 – ~100mJ at 250nm

• For short pulse: Ti:Sapphire, 800, 400, 260nm.
 – Commercial systems – expensive but high power (many GW, and short pulse: 50fs – few ps).
Shortest Wavelength Options

• 5 X YAG: 205nm.
 – Commercially available but cutting edge

• F₂ Excimer laser: 157nm
 – Commercial – for semiconductor processing
 – Energy, pulse length: few nanoseconds.

• ~125nm Hard limit for transparent optics

• TW laser pumped XUV lasers down to (40nm), but not practical for a measurement device.

• SASE FEL (just kidding).
Interferometers to Beat the Wavelength Limit

• Get fringe spacing of $\lambda/2$

 – Scan and measure modulation depth

 – Modify fringe spacing (typically slow)

• For Gaussian beams, can measure very small spots (<70 nm demonstrated at .5 micron λ. in FFTB at SLAC)

• Limit depends on tails and vibrations.

• Even with 250nm light, need $<$~1% electron beam in tails to see a 5 micron spot.
TEM$_{01}$ Mode Operation

• Generate mode with null on axis (easy)
• Effect is similar to an interferometer

Resolution not as good as an interferometer
• Can do a scan rather than a power spectrum like measurement
• Can also be used for beam tail measurements
• Pushes resolution a factor of 2 or so relative to TEM$_{00}$ for the same optics.
TEM$_{01}$ Beams

Scan direction

Electron beam

TEM$_{01}$ mode

Scan direction

Plate with $\frac{1}{2}$ wave step

Near TEM$_{01}$ Light

Null

Aperture to stop scattered light
Final Focus Lens Issues

- Optical design becomes more complex as F/# decreases: F/10 easy, F/1 very difficult.
- Short wavelength lasers limit available materials.
- Commercial lenses very good optically
 - Diffraction limited down to almost F/1
 - Cannot be used in vacuum
 - Do not focus correctly through windows
 - Check with ray tracing code (ZEEMAX or similar).
- Re-Imaging good for checking optics
Lens Options

Multi-element lens: Standard Design

All reflective telescope:
Broadband, but worse F/# and working distance for same size
Requires hole in beam.

Lens / Mirror combination:
Short and good performance
Cannot re-image beam
Beam dumped in vacuum.
Low Energies

- Compton edge varies as γ^2.
 - At high energies, degraded electrons and GeV gammas provide a low background signal.
 - A low energies need to see X-rays superimposed on a large background: need high laser power.

- Low energy beams are physically large.
 - Need high laser power.
 - In many cases carbon wires / TR monitors better.

- In many cases, physical wires are a better choice for low energies.
Resonant Cavity Laser Wires

- CW laser with optical cavity to enhance power.
 - Power enhancement of X 100 typical,
 - Power enhancement X 10^4 might be possible
 - Tight tolerances, Damage issues
- Useful for rings where duty factor is high.
- Tolerances are the primary technical problem
Cavity Feedback Options

Cavity length feedback: Uses simple fixed frequency laser, but requires more complex in-vacuum cavity control

Laser frequency feedback: Cavity is simple, but requires frequency tunable laser
Self Locking Feedback Concept

- Use Erbium doped fiber laser (or similar).
 - Commercial devices to >100mW, single mode
- Self Q-switching, etc, may be a problem
Resonant Cavity Wires – Spot Size

• Cavity length must be an exact multiple of $\lambda/2$
 - Length control $\sim \lambda/Q$, typically <1nm. (feedback easy)
• Additional length requirement for spot size

\[
(1 - \frac{L}{2R}) = \frac{R^2_L}{L^2}
\]

• Example: 50x5 micron spot, 0.5μm wavelength, 2cm cavity
 - Length Accuracy 0.25 microns (absolute).
 • There may be no usable fringes!
 - Mirror radius accuracy 2.5×10^{-5}.
Temporal Pulse Structure

- Q-switched lasers provide few nanosecond pulses.
- Mode-locked (and amplified) lasers provide picosecond (or shorter) pulses.
- Mode-locking makes more efficient use of laser power

BUT

- *You don't pay by the photon!!*
Mode locked vs. Q-switched lasers

Q-switched and Injection Seeded

- Pulse length: 5 – 20 nanoseconds
- Repetition rate 30 – 120 Hz
- Peak power up to ~100MW

Mode Locked and Amplified

- Pulse length: 50 fs to 100ps
- Repetition rate <10KHz. Up to MHz
- Peak power (~), But average power <~ 1Watt.
Mode Locked Laser Timing Issues

- Timing jitter for mode-locked lasers is typically a few picoseconds.
- Jitter can be as good as ~250 femtoseconds (with a LOT of work).
- Want timing jitter < ~1/10 laser pulse length to have low noise overlap.
- Short pulses can make it difficult to find the initial signal (need to scan Y and T).
 - This was tough in SLC even with 100ps pulses.
Q-Switched Laser Timing Issues

• Long (few nanosecond) pulse makes it easy to find the beam

• But: Output from standard Q-switched laser has strong longitudinal mode beating.
 - Light is 100% modulated at the bandwidth of the laser material (few X 100 GHz)
 - Too fast to see on most photodetectors, but the beam will see it.
 - Produces output with large fluctuations

• Can fix mode beating with an “injection seeded” laser.
 - Commercial technology, but expensive ($40K)
What a Q-switched laser pulse looks like to a fast detector (like a picosecond electron beam)
Optical damage

• Safe numbers are 5GW/cm2, 1J/cm2.
 – Billion shot damage threshold is lower than million shot threshold

• Can go higher but must be very careful
 – Clean optical surfaces
 – No transverse mode beating in laser (hot spots)
 – Accurate peak energy density measurement
 – Extreme care during alignment / focusing

• Typically no good reason to go to high densities.
Cumulative Nonlinear Damage

- Discovered for Excimer lasers at 308nm, for semiconductor processing.
- Long term change in index of refraction for Fused Silica.
 - Degrades focus
- Source is 2-photon damage:
 - Best to use materials which transmit $\frac{1}{2}$ laser wavelength
 - (OK for green, but not for hard UV – 250nm)
 - Limit peak power density
- Reflective optics (mostly) immune.
Laser System Issues

Honesty Scale:

- 1. Used Car Dealers
- 2. Political Candidates
- 3. Laser Vendors

Biggest lies:

- 1. The car was only driven to church and back
- 2. Cutting taxes will increase revenue
- 3. The laser produces a TEM_{00} Beam

• Be very suspicious of performance claims.
Its a Diagnostic, Not an Experiment (apple pie and motherhood)

- Keep the laser wire system simple
 - Even if this is a performance trade-off
- Must work even for unexpected electron beam parameters
 - If the beam is good, you don't need to measure it.
- Use conservative parameters for good reliability.