Laser Wires: Technical Challenges Outstanding

Josef Frisch

Challenges

- Measuring small beam sizes
 - Wavelength requirements
 - CW cavity laser wire challenges
 - Tricks to achieve better resolution (difficult)
- Low beam energies backgrounds
- Temporal structure
- Optical damage

Wavelength Requirements

For Scan of Y spot size: Small Y size -> small laser waist Large X size -> large laser Rayleigh range

Required Wavelength

- For laser size to contribute <10% of spot size
- Use $R_L = \sigma_x$, and $\sigma_y = 0.3\sigma_y$ (Approximate)

$$\lambda = \frac{4}{9}\pi \frac{\sigma_y^2}{\sigma_x}$$

Example: NLC 1000 Linac end: 7.5x0.9 micron spot. Need 0.15 micron light!

Simulated Laser Scan

Wavelength vs. Laser Options

- 1 Micron: Nd:YAG.
 - Commercial systems to ~1J, 5 nanosecond
 - Nd:YLF, Nd:Glass, Yb:YAG, etc, etc for various application requirements.
- 0.5, 0.35, 0.25 micron: Frequency multiplied Nd:YAG (or similar)

- ~100mJ at 250nm

- For short pulse: Ti:Sapphire, 800, 400, 260nm.
 - Commercial systems expensive but high power (many GW, and short pulse: 50fs – few ps).

Shortest Wavelength Options

- 5 X YAG: 205nm.
 - Commercially available but cutting edge
- F₂ Excimer laser: 157nm
 - Commercial for semiconductor processing
 - Energy, pulse length: few nanoseconds.
- ~125nm Hard limit for transparent optics
- TW laser pumped XUV lasers down to (40nm), but not practical for a measurement device.
- SASE FEL (just kidding).

Interferometers to Beat the Wavelength Limit

- Get fringe spacing of $\lambda/2$
 - Scan and measure modulation depth
 - Modify fringe spacing (typically slow)
- For Gaussian beams, can measure very small spots (<70 nm demonstrated at .5 micron λ. in FFTB at SLAC)
- Limit depends on tails and vibrations.
- Even with 250nm light, need <~1% electron beam in tails to see a 5 micron spot.

TEM₀₁ Mode Operation

- Generate mode with null on axis (easy)
- Effect is similar to an interferometer
- Resolution not as good as an interferometer
- Can do a scan rather than a power spectrum like measurement
- Can also be used for beam tail measurements
- Pushes resolution a factor of 2 or so relative to TEM_{00} for the same optics.

Final Focus Lens Issues

- Optical design becomes more complex as F/# decreases: F/10 easy, F/1 very difficult.
- Short wavelength lasers limit available materials.
- Commercial lenses very good optically
 - Diffraction limited down to almost F/1
 - Cannot be used in vacuum
 - Do not focus correctly through windows
 - Check with ray tracing code (ZEEMAX or similar).
- Re-Imaging good for checking optics

Lens Options

Multi-element lens: Standard Design

All reflective telescope:

Broadband, but worse F/# and working distance for same size Requires hole in beam.

Lens / Mirror combination: Short and good performance Cannot re-image beam Beam dumped in vacuum.

Low Energies

- Compton edge varies as γ^2 .
 - At high energies, degraded electrons and GeV gammas provide a low background signal
 - A low energies need to see X-rays superimposed on a large background: need high laser power
- Low energy beams are physically large
 - Need high laser power.
 - In many cases carbon wires / TR monitors better
- In many cases, physical wires are a better choice for low energies.

Resonant Cavity Laser Wires

- CW laser with optical cavity to enhance power.
 - Power enhancement of X 100 typical,
 - Power enhancement X 10⁴ might be possible
 - Tight tolerances, Damage issues
- Useful for rings where duty factor is high.
- Tolerances are the primary technical problem

Cavity Feedback Options

Cavity length feedback: Uses simple fixed frequency laser, but requires more complex in-vacuum cavity control

Laser frequency feedback: Cavity is simple, but requires frequency tunable laser

Self Locking Feedback Concept

• Use Erbium doped fiber laser (or similar).

- Commercial devices to >100mW, single mode

• Self Q-switching, etc, may be a problem

Resonant Cavity Wires – Spot Size

- Cavity length must be an exact multiple of $\lambda/2$
 - Length control ~ λ/Q , typically <1nm. (feedback easy)
- Additional length requirement for spot size

$$\left(1 - \frac{L}{2R}\right) = \frac{R_L^2}{L^2}$$

- Example: 50x5 micron spot, 0.5µm wavelength, 2cm cavity
 - Length Accuracy 0.25 microns (absolute).
 - There may be no usable fringes!
 - Mirror radius accuracy 2.5x10⁻⁵.

Temporal Pulse Structure

- Q-switched lasers provide few nanosecond pulses.
- Mode-locked (and amplified) lasers provide picosecond (or shorter) pulses.
- Mode-locking makes more efficient use of laser power

BUT

• You don't pay by the photon!!

Mode locked vs. Q-switched lasers

Q-switched and Injection Seeded

- Pulse length: 5 20 nanoseconds
- Repetition rate 30 120 Hz
- Peak power up to ~100MW

Mode Locked and Amplified

- Pulse length: 50 fs to 100ps
- Repetition rate <10KHz. Up to MHz
- Peak power (~), But average power <~ 1Watt.

Mode Locked Laser Timing Issues

- Timing jitter for mode-locked lasers is typically a few picoseconds.
- Jitter can be as good as ~250 femtoseconds (with a LOT of work).
- Want timing jitter < ~1/10 laser pulse length to have low noise overlap.
- Short pulses can make it difficult to find the initial signal (need to scan Y and T).
 - This was tough in SLC even with 100ps pulses.

Q-Switched Laser Timing Issues

- Long (few nanosecond) pulse makes it easy to find the beam
- But: Output from standard Q-switched laser has strong longitudinal mode beating.
 - Light is 100% modulated at the bandwidth of the laser material (few X 100 GHz)
 - Too fast to see on most photodetectors, but the beam will see it.
 - Produces output with large fluctuations
- Can fix mode beating with an "injection seeded" laser.
 - Commercial technology, but expensive (\$40K)

What a Q-switched laser pulse looks like to a fast detector (like a picosecond electron beam)

Optical damage

- Safe numbers are 5GW/cm², 1J/cm².
 - Billion shot damage threshold is lower than million shot threshold
- Can go higher but must be very careful
 - Clean optical surfaces
 - No transverse mode beating in laser (hot spots)
 - Accurate peak energy density measurement
 - Extreme care during alignment / focusing
- Typically no good reason to go to high densities.

Cumulative Nonlinear Damage

- Discovered for Excimer lasers at 308nm, for semiconductor processing.
- Long term change in index of refraction for Fused Silica.
 - Degrades focus
- Source is 2-photon damage:
 - Best to user materials which transmit ¹/₂ laser wavelength
 - (OK for green, but not for hard UV 250nm)
 - Limit peak power density
- Reflective optics (mostly) immune.

Laser System Issues

Honesty Scale:

- 1. Used Car Dealers
- 2. Political Candidates
- 3. Laser Vendors

Biggest lies:

- 1. The car was only driven to church and back
- 2. Cutting taxes will increase revenue
- 3. The laser produces a TEM₀₀ Beam
- Be very suspicious of performance claims.

Its a Diagnostic, Not an Experiment (apple pie and motherhood)

- Keep the laser wire system simple
 - Even if this is a performance trade-off
- Must work even for unexpected electron beam parameters
 - If the beam is good, you don't need to measure it.
- Use conservative parameters for good reliability.