Crab Cavity RF Control

Josef Frisch SLAC

Requirements

- Differential phase errors most important.
 - Tolerance ~.05° S-Band (2856 MHz)
- Amplitude and common mode phase not at all critical (similar to other RF requirements)
- Drive power < 1 S-band klystron

How hard is this?

- Best SLAC Klystrons have ~0.1 degree jitter.
- Tough, but not ridiculous

How to measure cavity phase

- Direct RF measurements
 - Good for short term, but has long term drift
- Beam trajectory
 - No beam deflection at correct phase
 - Use Beam / Beam deflection for measurement
- Induced field
 - Use asymmetric crab cavity with energy gain off phase?
 - NO: This is asking for wakefield problems!

How Hard is a 0.05° Phase Measurement?

- Absolute phase number is not scary
 - Have done $.003^{\circ}$ at 357MHz without any heroics
- Mixer measurement: Typically get ~1mV/degree
 - .05 degree is a 50uV measurement
 - 1 MHz bandwidth -> $50nV/Hz^{1/2}$. (35dB noise figure)
 - Not scary
- Signal levels are constant
 - Don't need to worry about amplitude to phase conversion.

Phase Control

- Using a single Klystron, with a hybrid splitter
 - Match waveguide lengths
 - Phase jitter will be equal for 2 cavities
- Use slow mechanical phase adjust to correct for thermal errors
- Use second klystron weakly coupled to one cavity for fast control.
 - Fast response (can use AWG to control within pulse)
 - Expensive but only need one.

Phase Reference Line Stability

- This is a short line: 30M, not 30 KM.
- Need stability of $\sim 5 \times 10^{-7}$ Relative Length
 - 15 microns: OK for ground motion / vibration
 - Copper temperature stability of .02° C.
 - SLAC water is stable to 0.1° C long term.
 - Only need this very short term (between beam measurements)
 - Easy
- Fundamental RF noise.
 - Thermal noise 10⁻²⁰W/Hz.
 - Assume 1 mW transmission power, 1 MHz bandwidth
 - 10⁻⁴ Degree thermal noise: Easy

Cavity Stability

- High cavity Q (few thousand) will cause large phase shifts from vibration and temperature
- Temperature: Expect ~100° RF / °C
- Appear to need .01°C stability
- But: Measure phase in and out of cavity correct average phase inside cavity.
- Also, only need stability for short times
- Cavity Matching?
 - Different frequency and Q will turn phase noise into beam motion
 - Phase noise already almost OK without matching

Overall Conclusions / Comments

- Parameters don't look particularly difficult.
- May find some unexpected effect.
- Prototype would be nice, but probably much lower priority than other systems.