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Topics Presented

Introduction

 What, Why, Where, and How
Sites vibration Characterization

o At Site —-127 CA

e At Site -135 CA
Characterization of Vibration sources (Site —135 CA)
Ground vibration characterization program at SLAC

* Field vibration measurement at SLAC

e Planned field vibration measurement in parallel tunnel
Conclusions
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Why do we care about

 NLC will collide beams (swarm) of electrons and positrons
 Toincrease probability of direct collisions of e'e , beam sizes must be very

small
* NLC beam sizesjust before collision; 200 - % 100000 nanometer s
x y 2
TS
2 nm

Vertical size (y) is smallest (2nm)

* Ground Motion and imported vibrations continuously misaliogn components of a

collider and can result in
— Off-set at IP S

— Emittance growth
&
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e Goal:
To achieve stability of within a few nanometer above a few
Hertz at the most critical region ( Interaction Point).

- Perspective:

Figure below, shows range of natural and man-made vibration.

Threshold of disturbance Human threshold of
of optical imerferometers perception of whole - body
and electron microscopes wvibration [1-8 Hz ]
MACHINERY VIBRATION
[0 —-100 Hz]
ATCMI% VIBRATIONS MICROSEISMS BUILDING VIBRATION SWAYING OF TALL BUILDINGS
L 0% Hz ] [01-1 H] (10— 100 Hz ] 0.1 -5 Hz]
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| 1 | 1 1 1 1 | | 1 )| 1
1 | | | 1 ] ! 1 T | |
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DISPLACEMENT AMPLITUDE
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Purpose of

vibration (e.g. frequency content, amplitude) caused by far-field
and near-field sources at the Technical Foundation denotes
where sensitive equipment is mounted.

Near-field sources, Associated with compressors, HVAC
equipment, pumps, fans, etc.

Far-field sources, Ground motion due to natural and cultural
sources, site specifics

« Excitation of Technical foundation is influenced primarily by
transmission properties of the soil.

 Because of the inhomogeneity and discontinuity of the soil an
estimate its transmission mechanisms are very complicated.

By means of in-situ measurements and 3-D soil dynamic modeling,
the reliability of such estimate can be greatly improved.
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Approach at pre-concept level
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Select a Location Geotechnical Studies
(Representative Site) — > (Soil/Rock Classification)
Good Geology and Quiet
Far-Field Excitation Attenuation
(Ambient Ground Mation — »  Chaacteidicsof |€¢——

Hovw

Select and Locate
Near-Field
(Chillers, Pumps, etc.) al

l

l

Estimate Near-Field
Excitation
(At Their Footings)

Estimate Technical Foundation
Vibration
( Response to Near and Far
Fields Sources)

Acceptance
Criteria
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Picture showing Sites Sandstone for mation

: : Probes wer e placed on the concr ete bed
near the measuring spot at CA-127 site P

at the measuring spot, then they
wer e cover ed with a shielding enclosure.
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View to the south along the future alignment View to the north along the future alignment
of Site-135-E, taken at the end of Bagley road of Site-135-E, taken at the end of Bagley road
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1 NLC site 127, Sept.5, 2001
22:10 - 22:50 (avg 37 files
01 SN\ (avg )

0.01 X
1E-3 AN

1E4 A\ NLC site 135 Oct.2, 2001
3 NN 14:23-15:08 (avg 9 files)

1E-5 4 \ /
1E-6 ] \\%« /
167 ] M\,ﬂ
1E-8 \A\W W

Measured on surface "
1E-9

1E-10
1E-11
1E-12

1E_13 I T T — T T 11T T T T LI B B T T LI R |
0.1 1 10 100
F, Hz

10

micron**2/Hz

Power displacement spectrum measured at the west spot at site—135-E ,
as compar ed with data from site-127
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e The noise level

measured on 1

surface is quite ] NLC site 127, Sept.5, 2001

low o 22:10 - 22:50 (avg 37 files)

« No significant \\

cultural noise was  _ 0.01

found O 5 NLC site 135, Oct.2, 2001
= 14:2/3-15:08 (avg 9 files)

« However, if we 1E-3 4 . p
are not care-full : &
will be our own 1E.a ] \

worst enemy 1 Measured on surface \\
« We are the 1E—5- — —— ———

T
major importer of 0.1 1 FHz 10 100
vibration and
Noise Displacement spectrum measured at the west spot at site—135-E ,

as compar ed with data from site-127
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- Legend:
SIJF'I'IITIEIF'-.-' for NLC 2001 Green figures indicate the number of 3ccess
Electron : 12 access+ 33 utility+ 29 access to shafts or ramps(people/equipment) to Beam
Housing
Positron : 13 access+ 33 utility+ 30 access to ~ Blue figures indicate the number of ytility shafts
KG or ramps {mechanical equipment
IR-1&
IR-2 Hall: _2 access+ 2 utility Red figures indicate the number of
Total : 27 access+ 08 utility+ 59 access to ZEras [ORn0Ie BRI L s O
KG B A ELTVERY AREA shafts to each klystron gallery
MAIN LINAC

IR-1 Schematic representation of
an access poink -Typical

1] 3 MAIN LINAC Side of aisle
in beam housing
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An access point may consists of a ramp or =
e"POSITRON an elevator with stairway- Typical e ELECTRON
Schematic sketch Not to Scale Klystron galleries are provided
Subject to review i the last 13 sectors of each
main linac June 1%, 2001

Conventional Facilities
Comoiled by 1 Sevil
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-The chiller rotating equipment rotating speed is 3600 RPM (60H2).

-The chiller equipment weighs 21,400 pounds.

-If a limit of 0.1 g is met at rotating equipment, the inertia force on
skid is about 2,140 Ib.

-The chiller equipment mounted on a spring isolated skid.

Generally, they have a natural frequency in the range of 4 Hz to 6
Hz which corresponds to; a reduction factor of about 1%.

Thus, one percent of this force is transmitted to chiller equipment
foundation.
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e et

Vibration Isolation (Transmissibility)

The magnitude af the force
transmiited to the ground ; F‘E = i+ ky

The transmissibility T . 1s defined as

p o Fe [ 1ealn’
E

Transmissability T

Frequency ratio n = {uw.
Transmissibilicy of an isolator as a function of frequency rario
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fs= Vg/(4H) W

Soil fundamental frequency Klystron Gallery
H

Attenuation of waves:

s : mir— ) : h Rayleigh
" EXP[ %y ] EXP[ 1 oh-surface
heotnetric dissipative
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EXI:I[ 0 ] P iﬂr‘ S =-wavet

h-wavekngth; w - sound welocity: e A2 G - canbe 10 - 25
for rear surface ground and up to hundreds for bedrock

i

¥
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Goal: In collaboration with Nick Simos of BNL

e to utilize an integrated procedure used for 3-D modeling and dynamic soil
analysis of Fault-Soil-Structure interaction.
* t0 generate ground motion and spatial distribution of soil propertiesusing
spectral representation based procedure.
 to assesstheresponse of technical foundation from near and far field sour ces.

2. Uround input motion
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TIME HISTORIES

o
Niui time
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Field Vibration Measurement Program  WRN/ER\Y

 EXxperts say the 3-D modeling and analysis is :
fancy, expensive and complex

 However, if benchmarked with reliable filed measurements it will be
a great tool to assess vibration response due to source changes in ;
planning, design and construction phase

« NLC Site Investigation plan for FY03 is:

« To prepare an accurate and consistent cost comparison of all
NLC representative sites (3-1L, 2-CA)

« To identify the cost “delta” for cut-and-cover vs. tunneling
construction methods for 2-CA sites (CA-135 vs. CA-127)

 Trade-Off; Tunnel Provides a More Stable and or Quiet Environment
over the cut-and-cover (Insufficient data available to compare)

 Trade-Study; Perform Vibration Measurement in a Parallel Tunnel as
well as for cut-and-cover
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Field Vibration Measurement at SLAC Sﬂ@l@ﬂ&

Selected Sector 9 and 10 along the SLAC accelerator housing for the field
measurement

 Geological conditions at Sector 9 &10:

Eocene sandstone and claystone (shear velocity of 720 m/sec)
 Geological conditions at CA-135 site:

Site Formation, sandstone with claystone (shear velocity > 760 m/sec)
Retained services of a firm expert in field of vibration measurements.

Colin Gordon and Associates of San Bruno, CA
Performed Field ground measurement at Sect. 9 at SLAC on 7Aug. 02.
Received the first draft of vibration measurement report on 27 Aug. 02.
 Following slides are an overview of the report.
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Planned Vibration Measurement Program

e Perform vibration measurement in cut-and-cover and parallel tunnel
constructed with a similar configuration and in a similar geological
formation as proposed for CA-135 and CA-127 sites, respectively

« To obtain relevant data associated with:

 Transmission of vibration from the surface to the tunnel floor for
cut and cover and parallel tunnel construction

« Vibration transmission from a parallel tunnel at the same depth
to the adjacent tunnel as well as along the tunnel

» Establish the Transfer Function (Frequency Response
Function or FRF) between the “source” and the “receiver” for
each case

e Use the data for benchmarking of 3-D soil dynamic modeling
program
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Figure &: Grourd Transmission - SLAC Cut-and Cover Tunnel - T Aug 2002

Figura 5: Grourd Transmission - SLAC Cut-arel Cower Tunnel - 7 fug 2002
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Log Mean Transmission From Drive Point S!

Source | Recetver Distance, ft 1 D%t;enua;g III_I? GWZE I;Irzequer;cg e . .
Ri 130 0.014 [ 00084 | 0012 [ 0003 i ]
R2 134 0.012 [ 0012 [ 0014 [ 0004 - —R1/S1 :
51 R3 162 0.011 [ 00084 | 0006 | 0001 - — R2/S1 1 -10
R4 233 0.010 [ o004 | 0002 | 0001 - —_R3/S1 ]
RS 289 0.005 [ 0002 [ 0003 [ 00003 o1 4 __ Ra/s1 1 0
- Ri 248 0.023 [ 0011 [ 0007 | 0008 : st ]
R2 271 0027 | 0011 [ 0007 | 0006 -
+ -30
Thefiguresin the above table represent the 3 &
attenuation % 0.01 ¢ 3
Factor A for avibration with its source near Sn E =
pr opagating along the same path. = g
Example 1. Suppose a pump isinstalled at S1, & 0001 ¢ S
and it produces a vibration at 30 Hz with an © 5
amplitude of X.
The amplitude at 30 Hz that we measure at R5
would bethe greater of either ambient or 0.009X. 0.0001 +
Example2: If we want to place a pump at S1 and I +-90
not to exceed ambient at R5 (0O6M ic in/sec), then i ]
we need to impose a limit on the resulting 0.00001 L L1 00
vibration at S1 of 0.6/0.009=67 Micin /sec. 1 10 100

Frequency, Hz
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Proposed Field Vibration Measurement in a Parallel Tunnel

e Surface-to-depth measurement will be obtained using:

» Traffic-as-source: It will measure the surface ambient and the
tunnel simultaneously, using the excitation at surface (traffic,etc)

« Data will be taken simultaneously over relatively long periods

* Impulsive-source: Measurement will use the same instrument
setup, using a controlled source, such as instrumented hammer

* A “FRF” will be obtained, showing attenuation provided by
ground (part of FRF is “coherence” measurement)

e Rail-as-source: Same discussion as “Traffic-as- source”, except
the source and receiver would be reversed in the computations

« Rationale: Small amount of traffic, not enough to get a signal
with adequate coherence may be the case in the middle of
the night (provides a check of the validity of measurement)
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Proposed Field Vibration Measurement in a Parallel Tunnel

e Tunnel-to-tunnel measurement will be obtained using:

« Electro-magnetic shaker: It will generate steady-state vibration
for frequency range from 2 Hz to 100Hz (frequency sweep) in
“source” tunnel with sensors placed near and along the tunnel
as well as in the adjacent tunnel

* Impulsive-source: Measurement will use the same instrument
setup, using a controlled source, such as instrumented hammer

« Shaker and hammer will simulate broad range of vibration
sources in the NLC service tunnel, such as activities,
ventilation equipment, cooling water, modulator, pumps, etc

A transfer function (FRF) will be obtained, showing attenuation
or amplification of vibration between the tunnels
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Proposed Locacu,on Vicinity Map;.-
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A cross-section through the Santa Monica mountains showing the different geological conditions.
32 of 35 - Asiri Reach 6 might be a potential test site.
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Geological Information CA-127 proposed tunnel is
' similar in configuration

» Geologic conditions at Reach 6

e Upper Topanga Formation; o } .
Sandstone and shale has a (g ™~ SO -
shear wave velocity of between 32 s
3,000 and 4,000 ft/sec SR

- ExPAHSIGN ||
GAP, TTP & :
(SEE NOTE 2.

» Further south, sandstone with
conglomerate imbedded shear
wave velocity of between 4,800
and 7,800 ft/sec fors

» Geologic conditions at CA-127 site

« Sites Formation; Sandstone with
intervals of interbedded clay- S
stone and siltstone (shear wave et 41"
velocity > 2500 ft/sec) '

~

ST FIAL CIP LINING
! AND IMVERT -
AFF DwWa MO, 5-000 |J =

PRECAST COMLAETE
SEGMENTAL Liker—L. I/ ff

Typical Cross-Section of
the MTA Tunnel
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Typical Cross-Section of the MTA Tunnels
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Conclusions

e Ground vibration characterization program is well underway at SLAC

* Representative sites with good geological conditions for cut-and-
cover and tunnel construction have been identified.

 The noise level measured on surface at both sites (CA-135 and
CA-127) are very low and no significant cultural noise was found.

* Near-field vibration sources for cut-and-cover are characterized.
* Field vibration measurement at SLAC is competed.

* Field vibration measurement in a parallel tunnel will start, soon.
 Initial work on 3-D modeling just started.
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