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Abstract

Quantum-mechanical limits on the final focusing and the
ultimate luminosity are reviewed, including the minimum
spot size, the maximm phase-space density, Oide effect,
and beamstrahlung.

1 INTRODUCTION

Quantum mechanics introduces limits on the spot size and
luminosity achievable in an electron-positron linear col-
lider. The most fundamental constraints arise from the un-
certainty principle and the Fermi-Dirac statistics. Others
are due to the quantum fluctuations of synchrotron radia-
tion or beamstrahlung and pair creation during the beam-
beam collision.

In this report we investigate the minimum spot size and
ultimate luminosity permitted by quantum mechanics, and
study how close to this limit presently proposed linear-
collider designs are. Specifically, we address the minimum
spot size, the maximum phase-space density, the effect of
synchrotron radiation in the final quadrupoles (Oide limit),
the constraints due to beamstrahlung, and the ultimate lu-
minosity.

For the purpose of illustration, we consider parameters
for three different linear collider designs — TESLA, NLC,
and CLIC —, for which we assume the parameters listed in
Table 1.

2 DIFFRACTION LIMITED SPOT SIZE

We can derive the quantum limit by a simple analogy be-
tween a classical beam, light, and a quantum particle [1].
For a classical particle beam the variation of the rms beam
size near the collision point is described by
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where β∗

y denotes the beta function at the collision point,
s the longitudinal distance from this point, and εy the geo-
metric beam emittance.

For a light beam or laser pulse an analogous expression
applies,
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where ZR, the Rayleigh length, is the equivalent of the beta
function, and λ/4 the equivalent of the geometric beam
emittance.

The equation for a single quantum particle is
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where β∗

y is the same as the classical beta function. As
for the laser, the emittance of the beam is replaced by the
particle’s (quantum) wave length λe/γ, divided by 4π.

Comparison of (1) and (3) shows that the quantum me-
chanical limit is reached, when the normalized emittance
approaches the value λ̄e/2 ≈ 0.2 pm. This normalized
emittance is still 4 to 5 orders of magnitude smaller than
the damping-ring target emittances.

Inserting the limiting emittance, we find a minimum spot
size of 5–30 pm for all three projects of Table 1.

3 BEAM DESCRIPTION BY WIGNER
DISTRIBUTION

Instead of using the wave function φ(x) for computing
quantum effects in an accelerator, it appears more conve-
nient to employ the equivalent description in terms of a
Wigner distribution. The Wigner distribution is defined as
[2]
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For an uncorrelated Gaussian wave packet with centroid
position x0 and centroid momentum p0, the function W is
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where σxσp = h̄/2. It is tempting to identify W with the
classical particle density. Indeed, if the two are initially
identical, in a linear system they remain the same for all
times. The temporal evolution of W (x, p, t) is described by
the Wigner-Moyal equation, which for linear or quadratic
potentials reduces to the classical Liouville equation. How-
ever, for a general wave function φ, or a nonlinear system
W is not a positive function, and, thus, it differs from the
classical density. A non-negative quantum-mechanical dis-
tribution is available in the form of the Husimi function [3],
which corresponds to a ‘smoothed’ Wigner distribution.

In the early 1990s, R. Fedele and coworkers have ap-
plied the quantum dynamical formalism to describe clas-
sical particle transport, by introducing the ‘thermal wave
model’ [4]. Instead of demonstrating the similarity of the



Table 1: Paramaters for future linear collider projects
parameter symbol TESLA NLC CLIC
bunch population [1010] Nb 2 0.8 0.4
DR energy [GeV] EDR 5 1.98 2.42
emittance from DR [nm] γεx,y,DR 8000, 20 3000, 30 620, 5
DR bunch length [mm] σz 6 3.6 1.2
DR energy spread [10−3] σE/E 1 0.9 1.1
DR beta [m] βy,DR 60 4 4
FF emittance [nm] γεx,y,FF 10000, 30 3600, 40 680, 10
IP beam energy [GeV] E∗ 250 250 1500
IP beta [mm] β∗

x,y 15, 0.4 8, 0.11 6, 0.07
IP spot size w/o pinch [nm] σ∗

x,y 554, 5.0 243, 3.0 67, 0.7
free length from IP [m] l∗ 3.0 3.5 4.3
Upsilon Υ 0.05 0.13 8.3
BS photons / e− Nγ 1.56 1.26 2.32

quantum description and the classical description, it might
be worthwhile to focus on the differences, and to determine
under which conditions quantum effects will become visi-
ble in the linear-collider beam transport.

For example, since in a nonlinear system the time evo-
lution of the Wigner distribution is different from that of
the classical distribution, we may ask whether the strong
sextupoles in the final focus could give rise to quantum-
mechanical deviations from the classical behavior.

4 PHASE SPACE DENSITY

Due to Pauli’s exclusion principle, each phase space unit
volume of dimension h3 can accommodate only one polar-
ized electron. Attributing a phase-space area of 2πε to each
plane of motion (ε is the geometric emittance in that plane),
this gives rise to the phase-space density limit

ρps ≡ N

γ3εxεyεz
≤ 1

λ̄3
e

. (4)

Table 2 shows that actual damping-ring design parameters
are still far away from this limit thanks, in particular, to the
huge longitudinal emittance.

Table 2: Design densities and quantum-mechanical limits
for various damping rings.

parameter symbol TESLA NLC CLIC

density ρps 2 × 1023 7 × 1023 2 × 1025

[m−3]
limit 1/λ̄3

e 7 × 1034 7 × 1034 7 × 1034

[m−3]

5 SYNCHROTRON RADIATION IN THE
FINAL QUADRUPOLE (OIDE EFFECT)

If electrons (or positrons) emit synchotron radiation pho-
tons when traversing the final quadrupole(s), they lose en-
ergy and acquire a different focal length, as illustrated in

Fig. 1. Since the photon emission is a random process, this
leads to an unavoidable blow up of the collision-point spot
size. The blow up becomes larger as the IP beta functions
are squeezed to smaller values, due to larger particle am-
plitudes and hence magnetic fields in the quadrupole.

γ

Figure 1: Schematic of Oide effect; particles emitting syn-
chortron radiation in the final quadrupole are no longer fo-
cused at the collision point.

The effect was first analyzed by K. Oide [5] and is there-
fore known as the ‘Oide effect’. Subsequently, the impact
on the luminosity was studied in a joint paper by K. Hirata,
B. Zotter, and K. Oide [6].

The total number of photons emitted per electron in the
final quadrupole,
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is of the order of 1 (α is the fine-structure constant), in-
dicating that the beam distribution at the interaction point
(IP) is non-Gaussian. The energy loss per unit length in the
final quadrupole is
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and the change in relative energy squared per unit length (a
quantum effect)
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The collision point spot size can be expressed as
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where
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Lq is the length of the quadrupole, Kq its strength (in units
of m−2), and l∗ the free length between the exit face of the
quadrupole and the IP.

Figure 2 is a graphical illustration of Eq. (8). The upper
curve corresponds to the CLIC design emittance (at the en-
trance of the final focus), the other to a 100 times smaller
value. The figure shows that the CLIC beam size can be re-
duced significantly by further lowering the emittance, but
not by decreasing the beta function below the actual design
value β∗

y ≈ 70 µm [7]. In Fig. 2, we have chosen F = 5.4,
which refers to the CLIC final focus [7], but the result is
quite insensitive to the precise value of F .

Figure 2: Vertical IP spot size σ∗

y , Eq. (8), as a function of
the IP beta function, for a normalized emittance of 10 nm,
and a 100 times smaller emittance, and assuming F ≈ 5.4
(value for the CLIC final focus).

The rms beam size is minimum for [5]
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suggesting that, near the Oide limit, the IP beta function in-
creases linearly with energy, which may hinder the desired
increases in luminosity at ultra-high energies.

Inserting the optimum value of β∗

y , the minimum IP spot
size is obtained as [5]
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(11)
It is independent of energy, but depends on the normalized
emittance, and, weakly, on the function F .

Figure 3 shows the minimum spot size (11) as a function
of the normalized emittance. For the smallest emittance
allowed by quantum mechanics, γεy ≈ λ̄e/2, the minimum
spot size becomes 1.3 pm. We consider this value as the
ultimate quantum-mechanical limit for the present type of
final-focus systems. Fortunately it is still three orders of
magnitude away from present designs.

Figure 3: Miminimum IP spot size σ∗

ymin
, Eq. (11), as a

function of the normalized emittance, assuming F ≈ 5.4.

6 SYNCHROTRON RADIATION IN
DETECTOR SOLENOID FIELD, WITH

CROSSING ANGLE

An effect similar to the Oide effect arises from synchrotron
radiation emitted in the fringe and body of the detector
solenoid, especially if the beams collide under a crossing
angle. The energy loss of the particle, together with the
vertical dispersion generated by the horizontal component
of the solenoid field (due to the crossing angle), leads to a
blow up of the spot size at the collision point.

The effect of synchotron radiation in the solenoid body
was computed analytically by J. Irwin [8]:

∆σ∗ 2
y

σ∗

y

=
cureλ̄eγ

5

σ∗ 2
y

∫

dsR36(s)
2

∣

∣

∣

∣

1

ρ(s)

∣

∣

∣

∣

3

=
1

20

cureλ̄e

σ∗ 2
y

(

Bsθcl
∗γ

2Bρ

)5

. (12)



A larger effect can arise from the fringe field of the
solenoid. This is illustrated in Figs. 4 and 5, simulation ex-
amples for CLIC, which show the dependence of the verti-
cal blow up on the crossing angle, on the solenoid field and
on the longitudinal extent of the fringe.

Figure 4: Simulated vertical spot size σ∗

y at the CLIC col-
lision point vs. θc considering solenoid fields of 4 and 6 T
[9].

Figure 5: Simulated vertical spot size σ∗

y at the CLIC colli-
sion point vs. length of the fringe field (right), considering
solenoid fields of 4 and 6 T [9].

7 POSSIBLE REMEDIES FOR THE OIDE
EFFECT

A number of approaches could help to reduce, alleviate, or
overcome the minimum spot size set by the Oide effect:

• Properly taking into account the photon statistics and
computing the actual luminosity, K. Hirata, B. Zotter
and K. Oide found that the rms spot size overestimates
the luminosity loss [6].

• The average strength of the quadrupoles can be ad-
justed (tapered or lowered) so as to compensate for
the effect of the average energy loss.

• Octupoles installed near the final quadrupole can even
compensate the average energy loss as a function of
amplitude [10].

• The synchotron radiation is suppressed, if ρ/γ � β
[11], where ρ/γ represents the radiation formation
length and ρ the local bending radius.

• The radiation is also suppressed for an ‘ultra-dense’
beam, due to Pauli’s exclusion principle.

• Smaller emittances allow for smaller spot sizes.

• An adiabatic focuser can overcome the Oide limit, and
may allow for much smaller spot sizes.

In the following, we discuss the last option in detail.

8 ADIABATIC FOCUSER

The concept of an adiabatic focuser was proposed by
P. Chen, K. Oide, A.M. Sessler and S.S. Yu in 1990 [12],
as a measure to bypass the Oide limit.

In adiabatic focusing the quadrupole gradient is contin-
uously increasing in the direction of beam propagation. In
parallel, the beta function (or beam size) are continually
decreasing, and particle amplitudes are limited by an en-
velope function that is also decreasing. The amplitude of a
lower energy particle will never exceed that of the reference
particle at nominal energy. For the concept of the adiabatic
focuser it is important that this statement holds true, even
if a particle loses energy due to synchrotron radiation. In
this way the Oide limit can be overcome. Figure 6 displays
a schematic of the adiabatic focuser. We note that the term
‘adiabatic’ refers to the condition that the change in β oc-
curring over a length β is small compared with β.

Figure 6: Schematic of adiabatic focuser. The varying
shade indicates the increasing focusing gradient.

For simplicity, Ref. [6] has considered the special case
of constant α(s) = α0 (where α(s) = −(dβ/ds)/2), such
that

K(s) =
1 + α2

0

β(s)2
, (13)



i.e., the focusing strength increases with s as 1/β2.
One distinguishes three different regimes of energy loss:

classical synchrotron radiation, transition regime, and the
quantum regime, depending on the value of Υ = γ2λ̄e/ρ
(here ρ is taken to be the local bending radius at an ampli-
tude equal to the rms beam size). The energy loss per unit
length in these three cases is

dγ

ds
= −2

3

α

λ̄e
×







Υ2, forΥ ≤ 0.2 (classical)
0.2Υ, for0.2 ≤ Υ ≤ 22 (trans.)

0.556Υ2/3, for22 ≤ Υ (quantum)
(14)

where α denotes the fine-structure constant, and γ the rela-
tivistic Lorentz factor.

The limitation on the adiabatic focusing arises from the
average fractional energy loss, which should be much less
than unity. This imposes a lower limit on the beta function.
For the classical regime, the resulting numerical value for
the minimum spot size is comparable to the Oide limit, al-
though the origin of the latter is different (the stochastic
nature of the radiation). Thus, to overcome the value of
the Oide limit with an adiabatic focuser we must enter the
transition or quantum regimes.

Combining the requirement that ∆γ/γ � 1 with an op-
tical matching condition between two regimes, one finds
that a certain normalized emittance γε is required for pass-
ing from the classical into the transition regime, namely
[12]

γε � γεtrans ≡
546λ̄e
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(1 + α2
0)

2
. (15)

Similarly, for entering the quantum regime, an even smaller
emittance is needed [12]:

γε � γεquant ≡
153
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2
. (16)

The expression on the right-hand side assumes a maximum
value for α0 =

√
3. The corresponding ‘critical’ emittance

to reach the quantum regime is

γεquant =
33/2153

234222
λ̄eα

3 ≈ 6.2 × 10−6 m . (17)

We note that the condition ε � εquant is already met by
most future linear-collider proposals.

In the quantum regime, the minimum spot size becomes
[12]
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Equation (18) promises extremely small spot sizes, as
illustrated in Fig. 7. For γεy = 10 nm, the adiabatic focuser
could produce a spot size of 10−9 nm!

However, a major problem with this approach is the
enormous gradient required. The authors of [12] assume

Figure 7: Miminimum IP spot size σ∗

ymin,AF
, Eq. (18), as

a function of the normalized emittance.

that a tapered gradient is realized by a plasma of vary-
ing density. Then, the electron density of the (underdense)
plasma is proportional to the quadrupole gradient K via

npl ≈
γK

2πre
. (19)

Figure 8 displays the final gradient (computed from
Eq. (13) by inserting the minimum beta function due to en-
ergy loss considerations) and the equivalent plasma density
according to (19) as a function of the normalized emittance
(note the expanded horizontal scale). The densities range
from 1023 cm−3 to 1030 cm−3. For comparison, plasma
densities in typical plasma wake-field acceleration exper-
iments extend from about 1014 cm−3 to 1020 cm−3 [14],
while metals, e.g., copper, have a density of the order of
1023 molecules per cubic centimeter. This suggests that for
most of the parameter range in Fig. 8 the ‘plasma’ would
need to be denser than a solid.

Figure 8: Final gradient K and the corresponding plasma
density npl ≈ γK/(2πre).



9 BEAMSTRAHLUNG AND ULTIMATE
LUMINOSITY

As illustrated by a schematic in Fig. 9, during the col-
lision the electrons (or positrons) are bent in the strong
field of the opposing beam and emit synchrotron radiation.
This radiation is called beamstrahlung. In order to reduce
the beamstrahlung, while retaining a reasonable luminos-
ity, the colliding beams are usually chosen as flat. The
amount of beamstrahlung is then determined only by the
bunch charge, the beam energy, the bunch length, and the
horizontal spot size, but independent of the vertical spot
size. Details of beam-beam phenomena in linear colliders
can be found in the review by K. Yokoya and P. Chen [13].

g

e -

e +

e -

e +
b e a m s t r a h l u n g  p h o t o n p a i r

Figure 9: Ilustration of beam-beam phenomena in a lin-
ear collider: beamstrahlung and pair production during the
collision of electron and positron bunches.

The beamstrahlung implies two unwanted side effects.
First, the luminosity spectrum is degraded, i.e., not all the
collision events occur at the nominal center-of-mass en-
ergy. Second, the beamstrahlung photons can convert into
electron-positron pairs. If the beam fields are strong (small
beam sizes) the pair production is coherent, i.e., the con-
version occurs in the coherent field of the opposing beam.
Large numbers of particles are produced, which may cause
background in the detector.

The character and the quantum nature of the beam-beam
collision is determined by the average Upsilon parameter
[13],
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and by the number of beamstrahlung photons emitted per
electron [13],

Nγ ≈ 5ασz

2γλ̄e

Υ
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≈ 2
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where α denotes the fine-structure constant, and the last
approximation applies if Υ ≤ 1.

The fraction of the luminosity at the design center-of-
mass energy, ∆L/L, is directly related to Nγ via [8]

∆L/L ≈ 1/N2
γ (1 − e−Nγ )2 , (22)

and the average energy loss of an electron during the colli-
sion can be expressed in terms of Nγ and Υ as [13]

δB ≈ 1

2
NγΥ

(1 + Υ2/3)1/2

(1 + (1.5Υ)2/3)2
. (23)

We next rewrite the luminosity equation as follows [15]:
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where η = Pbeam/Pwall = frepNbnb/Pwall, frep is the
repetition rate, Pwall the wall plug power, Pbeam the beam
power, η the efficiency of converting wall-plug power into
beam power, and Eb the beam energy.

In order to discover new physics at high energies, the
luminosity should increase (at least) as the square of the
beam energy [16], because most cross sections decrease as
1/γ2.

We can derive two different estimates for the ultimate
luminosity including the basic quantum constraints.

First, we ignore both beamstrahlung and Oide effect,
and assume that all three emittances are quantum lim-
ited. Specifically, we suppose that γεy,z ≈ λ̄e/2, γεx ≈
Nbλ̄e/2, β∗

x,y ≈ σz , and

σz ≈ γεz

γ(∆p/p)rms

,

where, e.g., the relative momentum spread (∆p/p)rms may
correspond to the rms bandwidth of the final focus (typi-
cally about 0.0028). Inserting these relations into (24), the
luminosity becomes
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The luminosity increases as the square of the energy, and,
hence, in this case there is no quantum limit for the maxi-
mum energy.

In the second case we maintain a constant value of Nγ ,
in order not to dilute the luminosity spectrum. Hence, in
this case we assume Nγ ≈ const. (this constrains Nb/σx),
γεy,z ≈ λ̄e/2, β∗

y ≈ σz, σz ≈ (γεz)/γ/(∆p/p)rms. For
Υ ≤ 1 the luminosity becomes
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Thus, confining the number of beamstrahlung photons, the
luminosity raises either linearly with energy (for small Υ)
or again quadratically (for large Υ). The luminosities (26)
or (27) should be lower than (25), the latter being the more
fundamental limit. A computed limit (27) higher than (25)



is an indication that keeping a constant value of Nγ is im-
possible, but that the latter is bound to decrease due to the
minimum phase-space volume occupied by the beam.

From the above relations, we can compute the potential
luminosity increases over the present design values which
are permitted by quantum mechanics. For the first case, the
factor of potential luminosity improvement is
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y,des are the design spot sizes. For the
second case and Υ ≤ 1, we find
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Table 3 shows the luminosity enhancement factors HL,1,
HL,2a, and HL,2b for various projects at their present de-
sign energy. The table also lists the extrapolated energy
reach, which is computed by requiring that the luminos-
ity increases as the square of the energy, again considering
the three different cases. The energy limit in case 2a ex-
ceeds the Planck energy (1.2 × 1019 GeV). A similar re-
sult was first obtained by J. Irwin in 1996 [17]. The other
two cases allow for increases in energy (and luminosity)
without limit. Alternative scaling laws for luminosity and
beamstrahlung were discussed in Refs. [18, 19].

10 CONCLUSIONS

The quantum nature of electrons allows focusing the beam
spot sizes down to about 1 pm. An ultimate limit on the
emittance arises from the uncertainty principle and a limit
on the beta function from synchrotron radiation in the final
quadrupole (‘Oide effect’).

According to fundamental constraints (uncertainty and
exclusion principles) and ignoring the Oide effect, but
keeping the number of beamstrahlung photons per electron
constant, the Planck scale can be reached with a luminosity
that increases as the square of the energy (L ∝ γ2), if we
extrapolate from the present 1-TeV designs.

The performance of these designs is, however, already
constrained by Oide effect, beamstrahlung, and, in particu-
lar, the available beam emittances. Thus, even though the
fundamental quantum mechanical limits are still distant,

new optics concepts and approaches will be needed for pro-
ducing, focusing and colliding beams with spot sizes below
1 nm.
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Table 3: Factors of potential luminosity increase permitted by quantum constraints, and the estimated energy reach, if
the luminosity increases as the square of the energy, without any other constraints (case 1) or keeping the number of
beamstrahlung photons constant either for a low or a high value of Υ (cases 2a and 2b). The Lorentz factor γ0 refers to
the design beam energy listed in Table 1. The numbers in parentheses do no apply, either because they correspond to a
low-Υ scaling for a high-Υ design — or vice versa —, or because the more fundamental limit (25) sets a tighter limit.

parameter symbol TESLA NLC CLIC

case 1 for γ = γ0 HL,1 9 × 1012 4 × 1012 1 × 1013

energy reach ∞ ∞ ∞
case 2a for γ = γ0 HL,2a 7 × 108 4 × 108 (5 × 108)
energy reach [GeV] 1.8 × 1020 9.5× 1019 (8.1 × 1020)
case 2b for γ = γ0 HL,2b (2 × 1014) (1× 1014) (1× 1015)
energy reach [GeV] (∞) (∞) ∞


