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Abstract

Coherent Synchrotron Radiation (CSR) can play an im-
portant role by not only increasing the energy spread and
emittance of a beam, but also leading to a potential insta-
bility. Previous studies of the CSR induced longitudinal
instability were carried out for the CSR impedance due to
dipole magnets. In this paper, the instability due to the CSR
impedance from a wiggler is studied assuming a large wig-
gler parameter K . The primary consideration is a low fre-
quency microwave-like instability in the damping rings of
several linear collider projects. The threshold is determined
by the instability with the longest possible wavelength.

1 INTRODUCTION

Many modern advanced accelerator projects [1]-[3] call
for short bunches with low emittance and high peak cur-
rent where coherent synchrotron radiation (CSR) effects
may play an important role. CSR is emitted at wavelengths
longer than or comparable to the bunch length whenever
the beam is deflected [4, 5]. The stringent beam require-
ments needed for short wavelength SASE Free-Electron
Lasers have led to intensive theoretical and experimental
studies [6]-[11] over the past a few years where the focus
has been on the magnetic bunch compressors required to
obtain the high peak currents. In addition to these single-
pass cases, it is also possible that CSR might cause a
microwave-like beam instability in storage rings. A the-
ory of such an instability in a storage ring has been re-
cently proposed in Ref. [12] with experimental evidence
published in [13]. Other experimental observations [14]-
[17] may also be associated with a CSR-driven instability
as supported by additional theoretical studies [18, 19].

The previous study of the CSR induced instability as-
sumed that the impedance is generated by the synchrotron
radiation of the beam in the storage ring bending mag-
nets [12]. In some cases (e.g. the NLC damping ring
[20]), a ring will include magnetic wigglers which intro-
duce an additional contribution to the radiation impedance.
The analysis of the microwave instability in such a ring re-
quires knowledge of the impedance due to the synchrotron
radiation in the wiggler. We calculate the wakefield and
impedance in a wiggler with a large parameter K [21] using
results from some earlier studies [22, 23]. We then study
the impact of the wiggler synchrotron radiation impedance
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on the beam longitudinal dynamics, both in the wiggler it-
self, and in rings with dipoles and wigglers [24].

2 THEORY

We focus on the longitudinal dynamics and study a thin
coasting beam. In a wiggler, the beam can be described by
a longitudinal distribution function ρ(ν, s, z). The positive
direction for the internal coordinate s is pointing to the for-
ward. The relative energy offset of a particle with energy
E with respect to the nominal energy E0 is expressed as
ν = (E − E0)/E0. The position of the reference parti-
cle in the beam line is z = c t with c to be the speed of
light in vacuum. Following Ref. [12], we use a 1-D Vlasov
equation to describe the evolution of the longitudinal dis-
tribution function ρ(ν, s, z),
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where, the slippage factor is defined as η ≡ ∂ 2s/∂ν ∂z =
α − 1/γ2 , with α to be the momentum compaction fac-
tor. The wake Green function w(s) describes the interac-
tion of two particles due to the synchrotron radiation, and
w(s) �= 0 for s > 0; w(s) = 0 for s < 0. In Eq. (1),
r0 ≈ 2.82 × 10−15 m is the classical electron radius, and
γ is the Lorentz factor. In the following, we assume the
equilibrium energy distribution function is a Gaussian, i.e.,
ρ0 = n0/(

√
2π ν0)× exp(− ν2/2 ν2

0), where n0 is the lin-
ear density, i.e., the number of particles per unit length.

The instability is then determined by the following dis-
persion relation
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Here, Λ = n0 r0/(|η| γ ν2
0); Ω = ω/(c k |η| ν0), p =

ν/ν0, and Z(k) =
∫ ∞
0 d s w(s) exp{− i k s} , is the CSR

impedance. The upper (lower) sign in Eq. (2) refers to the
case of a positive (negative) η.

In a damping ring, there are both dipoles and wigglers.
The corresponding CSR impedance is the summation of the
impedance from the dipoles and the wigglers:

Z(k) = ZD(k)
Θ R

C
+ ZW (k)

LW

C
, (3)

where, R, Θ, LW and C are the dipole bending radius,
the total bending angle, the wiggler total length and the
damping ring circumference.



In our model, we use the steady state impedance. For a
dipole, the steady state CSR impedance is [7]

ZD(k) = − i A
k1/3

R2/3
, (4)

with A = 3−1/3 Γ(2/3)(
√

3 i − 1) .
The wiggler impedance ZW (k) is computed in Ref.

[21]. For the reasons discussed below, the instability
threshold is lowest at relatively low frequency. The asymp-
totic behavior as k → 0 of ZW is [21]
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This is accurate enough for the low-frequency region k ∈
[0, 0.1 k0], where k0 ≡ 4γ2kw/K2 is the wiggler funda-
mental radiation wavenumber.

3 RESULTS

We will numerically solve the dispersion relation in Eq.
(2), and study the damping rings of the proposed linear col-
lider projects [1, 2], where damping wigglers are used. The
parameters are given in Table 1. However, before using Eq.
(2) to calculate the threshold, let us consider a scaling anal-
ysis. According to Eq. (4), the dipole CSR impedance
scales as ZD(k) ∝ k1/3, while, according to Eq. (5),
the wiggler CSR impedance scales as Re(ZW (k))∝ k, and
Im(ZW (k))∝ k log(k), which is a weaker scaling than k.
Hence, the CSR induced energy modulation has a scaling
no-stronger than k. On the other hand, the slippage effect
is linear proportional to k according to the second term in
Eq. (1), or more clearly in the denominator of the disper-
sion relation in Eq. (2). In the beam, there is a finite en-
ergy spread, which will produce a phase mixing due to the
slippage effect. Such phase mixing effect will destroy the
density modulation due to the CSR induced energy modu-
lation. This phase mixing effect is more serious for short
wavelength perturbations, and the resulting damping is pro-
portional to k. As we explained above, the growth due to
the CSR impedance is weaker than the linear scaling of the
phase mixing effect. Hence, it is expected that the threshold
is determined by the perturbation with the longest possible
wavelength.

In a real machine, the vacuum chamber causes an ex-
ponential suppression of the radiation at wavelengths λ
greater than a “shielding cutoff” [4]

λc ≤ 4
√

2r(r/R)1/2 , (6)

where, R is the dipole bending radius, and r is the vacuum
chamber half height. The numerical coefficient of Eq. (6)
assumes that the vacuum chamber is made up of two in-
finitely wide plates. Different cross sections give different
numerical factors [27]. Given the previous discussion, the
threshold will be the lowest at the “shielding cutoff” wave-
length.
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Figure 1: The threshold as a function of the CSR wave-
length for the KEK ATF damping ring [26]. Plotted on
the vertical axis is the number of particles per bunch, in
units of 1010. Plotted on the horizontal axis is the CSR
instability wavelength in units of mm. The dashed line is
the result for the dipoles only, while the solid line takes
into account of the contributions from the dipoles and the
wigglers. The vertical straight line is the approximate criti-
cal wavelength beyond which the radiation is exponentially
suppressed. The horizontal straight line is the nominal par-
ticle number per bunch, i.e., 1 × 1010.

For the KEK ATF prototype damping ring [26], with
the parameters in Table 1, the cut-off wavelength would be
about λc ≈ 3.1 mm according to Eq. (6). In Fig. 1, we plot
the threshold as a function of the perturbation wavelength.
It is clearly seen that the threshold current decreases as we
approach the longer wavelength perturbations; a result ex-
pected according to our scaling analysis. Taking the dipole
CSR impedance alone, for the single bunch charge, the in-
stability sets in for perturbations with wavelengths λ > 2.8
mm. Adding the wiggler CSR impedance, the electron
beam would be unstable for perturbations with wavelengths
λ > 1.9 mm.

For the NLC main damping ring [20], with the nominal
current, we find that perturbations with wavelengths λ >
3.5 mm are not stable due to the dipole CSR impedance
alone. Adding the CSR impedance from the wiggler causes
perturbations with wavelengths λ > 2.6 mm to be unstable.
In Fig. 2, we plot the threshold as a function of the pertur-
bation wavelength. For the TESLA damping ring [25], the
impedance from the dipoles and wigglers will not drive the
instability for perturbations with wavelengths λ < 5 mm.
Based on the parameters in Table 1 and according to Eq.
(6), we computed the “shielding cutoff” wavelengths. At
these cutoff wavelengths, the threshold currents are sum-
marized in Table 1.



NLC TESLA ATF

Circumference C/km 0.3 17 0.14

Dipole radius R/m 5.5 80 5.73

Total bending angle Θ/2π 1 5/3 1

Momentum compaction α/10−4 2.95 1.2 19

Energy E/Gev 1.98 5 1.3

Energy rms spread ν0/10−4 9.09 9 6

Bunch rms length σz /mm 3.6 6 5

Particles in a bunch Ne/109 7.5 20 10

Wiggler peak field Bw/T 2.15 1.5 1.88

Wiggler period λw/m 0.27 0.4 0.4

Wiggler total length Lw/m 46.24 432 21.2

Cross section half height r/cm 1.6 2 1.2

Cutoff wavelength λc/mm 4.9 1.8 3.1

Threshold at cutoff (wiggler off) N t/109 6.0 274.4 9.5

Threshold at cutoff (wiggler on) N t/109 5.2 245.6 7.6

Table 1: Parameters and results for the NLC main damping ring [20], the TESLA damping ring [25], and the KEK ATF
prototype damping ring [26].
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Figure 2: The threshold as a function of the CSR wave-
length for the NLC main damping ring [20]. Plotted on
the vertical axis is the number of particles per bunch, in
units of 1010. Plotted on the horizontal axis is the CSR
instability wavelength in units of mm. The dashed line is
the result for the dipoles only, while the solid line takes
into account of the contributions from the dipoles and the
wigglers. The vertical straight line is the approximate criti-
cal wavelength beyond which the radiation is exponentially
suppressed. The horizontal straight line is the nominal par-
ticle number per bunch, i.e., 0.75 × 1010.

4 DISCUSSION

The theory in this paper is for an ideal ring with dis-
tributed CSR impedance from dipoles and wigglers. The
CSR impedance used in this paper is the steady state result
and a costing beam assumption is adopted in the theory. In
reality, there are other sources of impedance, which will
initiate some energy modulation and density modulation in
the beam. The cutoff calculation is also based on an ideal
ring with vacuum chamber consisting of infinitely wide
plates. Further theoretical work should include folding the
full radiation spectrum with the cutoff into the impedance.
There is also a question about whether a mode can coprop-
agate with the electron beam. All these uncertainties in the
theory need further exploration. An experiment in KEK
ATF prototype damping ring will help verify the theory and
clarify the cutoff issues.
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